m6A RNA methylation impacts fate choices during skin morphogenesis

  1. Linghe Xi
  2. Thomas Carroll
  3. Irina Matos
  4. Ji-Dung Luo
  5. Lisa Polak
  6. H Amalia Pasolli
  7. Jens C. Brüning
  8. Samie R Jaffrey
  9. Elaine Fuchs  Is a corresponding author
  1. Rockefeller University, United States
  2. The Rockefeller University, United States
  3. Institute for Genetics and Center for Molecular Medicine (CMMC), University of Cologne, Germany
  4. Weill Cornell Medical College, Cornell University, United States

Abstract

N6-methyladenosine is the most prominent RNA modification in mammals. Here we study mouse skin embryogenesis to tackle m6A’s functions and physiological importance. We first landscape the m6A modifications on skin epithelial progenitor mRNAs. Contrasting with in vivo ribosomal profiling, we unearth a correlation between m6A-modification in coding sequences and enhanced translation, particularly of key morphogenetic signaling pathways. Tapping physiological relevance, we show that m6A loss profoundly alters these cues and perturbs cellular fate choices and tissue architecture in all skin lineages. By single-cell transcriptomics and bioinformatics, both signaling and canonical translation pathways show significant downregulation after m6A loss. Interestingly, however, many highly m6A-modified mRNAs are markedly upregulated upon m6A loss, and they encode RNA-methylation, RNA-processing and RNA-metabolism factors. Together, our findings suggest that m6A functions to enhance translation of key morphogenetic regulators, while also destabilizing sentinel mRNAs that are primed to activate rescue pathways when m6A levels drop.

Data availability

The miCLIP and single-cell RNA-seq data that support the findings of this study have been deposited to the Gene Expression Omnibus (GEO) repository with the accession codes GSE147415, GSE147489 and GSE14749.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Linghe Xi

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  2. Thomas Carroll

    Bioinformatics Resouce Center, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. Irina Matos

    Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6100-8020
  4. Ji-Dung Luo

    Bioinformatics Resource Center, The Rockefeller University, New York City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0150-1440
  5. Lisa Polak

    Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  6. H Amalia Pasolli

    Electron Microscopy Resource Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Jens C. Brüning

    Department of Mouse Genetics and Metabolism, Institute for Genetics and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  8. Samie R Jaffrey

    Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3615-6958
  9. Elaine Fuchs

    Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, United States
    For correspondence
    fuchs@rockefeller.edu
    Competing interests
    Elaine Fuchs, Elaine Fuchs is a member of the Scientific Advisory Boards of L'Oreal and Arsenal Biosciences.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1239-5316

Funding

Damon Runyon Cancer Research Foundation (Dale F. and Betty Ann Frey Fellow,DRG-2263-16)

  • Linghe Xi

National Institute of Health (R01-AR27883)

  • Elaine Fuchs

National Institute of Health (R01-AR31737)

  • Elaine Fuchs

National Institute of Health (R01-CA186702)

  • Samie R Jaffrey

National Institute of Health (R21-CA224391)

  • Samie R Jaffrey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All mouse strains were housed in an AAALAC-accredited facility and experiments were conducted according to the Rockefeller University's Institutional Animal Care and Use Committee (IACUC), and NIH guidelines for Animal Care and Use. All animal procedures used in this study are described in our #20012-H & #17091-H protocols, which had been previously reviewed and approved by the Rockefeller University IACUC.

Copyright

© 2020, Xi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,185
    views
  • 648
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Linghe Xi
  2. Thomas Carroll
  3. Irina Matos
  4. Ji-Dung Luo
  5. Lisa Polak
  6. H Amalia Pasolli
  7. Jens C. Brüning
  8. Samie R Jaffrey
  9. Elaine Fuchs
(2020)
m6A RNA methylation impacts fate choices during skin morphogenesis
eLife 9:e56980.
https://doi.org/10.7554/eLife.56980

Share this article

https://doi.org/10.7554/eLife.56980

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.