m6A RNA methylation impacts fate choices during skin morphogenesis

  1. Linghe Xi
  2. Thomas Carroll
  3. Irina Matos
  4. Ji-Dung Luo
  5. Lisa Polak
  6. H Amalia Pasolli
  7. Jens C. Brüning
  8. Samie R Jaffrey
  9. Elaine Fuchs  Is a corresponding author
  1. Rockefeller University, United States
  2. The Rockefeller University, United States
  3. Institute for Genetics and Center for Molecular Medicine (CMMC), University of Cologne, Germany
  4. Weill Cornell Medical College, Cornell University, United States

Abstract

N6-methyladenosine is the most prominent RNA modification in mammals. Here we study mouse skin embryogenesis to tackle m6A’s functions and physiological importance. We first landscape the m6A modifications on skin epithelial progenitor mRNAs. Contrasting with in vivo ribosomal profiling, we unearth a correlation between m6A-modification in coding sequences and enhanced translation, particularly of key morphogenetic signaling pathways. Tapping physiological relevance, we show that m6A loss profoundly alters these cues and perturbs cellular fate choices and tissue architecture in all skin lineages. By single-cell transcriptomics and bioinformatics, both signaling and canonical translation pathways show significant downregulation after m6A loss. Interestingly, however, many highly m6A-modified mRNAs are markedly upregulated upon m6A loss, and they encode RNA-methylation, RNA-processing and RNA-metabolism factors. Together, our findings suggest that m6A functions to enhance translation of key morphogenetic regulators, while also destabilizing sentinel mRNAs that are primed to activate rescue pathways when m6A levels drop.

Data availability

The miCLIP and single-cell RNA-seq data that support the findings of this study have been deposited to the Gene Expression Omnibus (GEO) repository with the accession codes GSE147415, GSE147489 and GSE14749.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Linghe Xi

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  2. Thomas Carroll

    Bioinformatics Resouce Center, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. Irina Matos

    Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6100-8020
  4. Ji-Dung Luo

    Bioinformatics Resource Center, The Rockefeller University, New York City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0150-1440
  5. Lisa Polak

    Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  6. H Amalia Pasolli

    Electron Microscopy Resource Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Jens C. Brüning

    Department of Mouse Genetics and Metabolism, Institute for Genetics and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  8. Samie R Jaffrey

    Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3615-6958
  9. Elaine Fuchs

    Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, United States
    For correspondence
    fuchs@rockefeller.edu
    Competing interests
    Elaine Fuchs, Elaine Fuchs is a member of the Scientific Advisory Boards of L'Oreal and Arsenal Biosciences.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1239-5316

Funding

Damon Runyon Cancer Research Foundation (Dale F. and Betty Ann Frey Fellow,DRG-2263-16)

  • Linghe Xi

National Institute of Health (R01-AR27883)

  • Elaine Fuchs

National Institute of Health (R01-AR31737)

  • Elaine Fuchs

National Institute of Health (R01-CA186702)

  • Samie R Jaffrey

National Institute of Health (R21-CA224391)

  • Samie R Jaffrey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All mouse strains were housed in an AAALAC-accredited facility and experiments were conducted according to the Rockefeller University's Institutional Animal Care and Use Committee (IACUC), and NIH guidelines for Animal Care and Use. All animal procedures used in this study are described in our #20012-H & #17091-H protocols, which had been previously reviewed and approved by the Rockefeller University IACUC.

Copyright

© 2020, Xi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,158
    views
  • 647
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Linghe Xi
  2. Thomas Carroll
  3. Irina Matos
  4. Ji-Dung Luo
  5. Lisa Polak
  6. H Amalia Pasolli
  7. Jens C. Brüning
  8. Samie R Jaffrey
  9. Elaine Fuchs
(2020)
m6A RNA methylation impacts fate choices during skin morphogenesis
eLife 9:e56980.
https://doi.org/10.7554/eLife.56980

Share this article

https://doi.org/10.7554/eLife.56980

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.