1. Neuroscience
Download icon

Subcellular sorting of neuregulins controls the assembly of excitatory-inhibitory cortical circuits

Research Article
  • Cited 0
  • Views 1,602
  • Annotations
Cite this article as: eLife 2020;9:e57000 doi: 10.7554/eLife.57000

Abstract

The assembly of specific neuronal circuits relies on the expression of complementary molecular programs in presynaptic and postsynaptic neurons. In the cerebral cortex, the tyrosine kinase receptor ErbB4 is critical for the wiring of specific populations of GABAergic interneurons, in which it paradoxically regulates both the formation of inhibitory synapses as well as the development of excitatory synapses received by these cells. Here we found that Nrg1 and Nrg3, two members of the neuregulin family of trophic factors, respectively regulate the inhibitory outputs and excitatory inputs of interneurons in the mouse cerebral cortex. The differential role of Nrg1 and Nrg3 in this process is not due to their receptor-binding EGF-like domain, but rather to their distinctive subcellular localization within pyramidal cells. Our study reveals a novel strategy for the assembly of cortical circuits that involves the differential subcellular sorting of family-related synaptic proteins.

Article and author information

Author details

  1. David Exposito-Alonso

    Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4950-2744
  2. Catarina Osório

    Department of Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5228-0599
  3. Clémence Bernard

    Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sandra Pascual-García

    Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0536-1185
  5. Isabel del Pino

    Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Oscar Marín

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    For correspondence
    oscar.marin@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6264-7027
  7. Beatriz Rico

    Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    beatriz.rico@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0581-851X

Funding

Medical Research Council (MR/S010785/1)

  • Oscar Marín
  • Beatriz Rico

Innovative Medicines Initiative (AIMS-2-TRIALS,777394)

  • Oscar Marín
  • Beatriz Rico

Fondation Roger de Spoelberch

  • Oscar Marín

La caixa Foundation

  • David Exposito-Alonso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals in accordance with European regulations, and Home Office personal and project licenses (PPL 0808-2004-2019, PPL PD025E9BC-2019-2024) under the UK Animals (Scientific Procedures) 1986 Act. The experiments performed in this study, have been designed to follow the 3R's rules whenever possible.

Reviewing Editor

  1. Nils Brose, Max Planck Institute of Experimental Medicine, Germany

Publication history

  1. Received: March 17, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)

Copyright

© 2020, Exposito-Alonso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,602
    Page views
  • 233
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Yunbo Li et al.
    Research Article

    The conserved MAP3K Dual leucine zipper kinases can activate JNK via MKK4 or MKK7. Vertebrate DLK and LZK share similar biochemical activities and undergo auto-activation upon increased expression. Depending on cell-type and nature of insults DLK and LZK can induce pro-regenerative, pro-apoptotic or pro-degenerative responses, although the mechanistic basis of their action is not well understood. Here, we investigated these two MAP3Ks in cerebellar Purkinje cells using loss- and gain-of function mouse models. While loss of each or both kinases does not cause discernible defects in Purkinje cells, activating DLK causes rapid death and activating LZK leads to slow degeneration. Each kinase induces JNK activation and caspase-mediated apoptosis independent of each other. Significantly, deleting CELF2, which regulates alternative splicing of Map2k7, strongly attenuates Purkinje cell degeneration induced by LZK, but not DLK. Thus, controlling the activity levels of DLK and LZK is critical for neuronal survival and health.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Laura J Wagstaff et al.
    Research Article

    After nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems. In mice, we find that repair cells express reduced c-Jun protein as regenerative support provided by these cells declines during aging and chronic denervation. In both cases, genetically restoring Schwann cell c-Jun levels restores regeneration to control levels. We identify potential gene candidates mediating this effect and implicate Shh in the control of Schwann cell c-Jun levels. This establishes that a common mechanism, reduced c-Jun in Schwann cells, regulates success and failure of nerve repair both during aging and chronic denervation. This provides a molecular framework for addressing important clinical problems, suggesting molecular pathways that can be targeted to promote repair in the PNS.