Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation

  1. Josué Haubrich  Is a corresponding author
  2. Matteo Bernabo
  3. Karim Nader
  1. McGill University, Canada

Abstract

Memory reconsolidation is a fundamental plasticity process in the brain that allows established memories to be changed or erased. However, certain boundary conditions limit the parameters under which memories can be made plastic. Strong memories do not destabilize, for instance, although why they are resilient is mostly unknown. Here, we investigated the hypothesis that specific modulatory signals shape memory formation into a state that is reconsolidation-resistant. We find that the activation of the noradrenaline-locus coeruleus system (NOR-LC) during strong fear memory encoding increases molecular mechanisms of stability at the expense of lability in the amygdala of rats. Preventing the NOR-LC from modulating strong fear encoding results in the formation of memories that can undergo reconsolidation within the amygdala and thus are vulnerable to post-reactivation interference. Thus, the memory strength boundary condition on reconsolidation is set at the time of encoding by the action of the NOR-LC.

Data availability

All data is available via Dryad doi:10.5061/dryad.70rxwdbtq

The following data sets were generated

Article and author information

Author details

  1. Josué Haubrich

    Department of Psychology, McGill University, Montreal, Canada
    For correspondence
    josue.haubrich@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3632-5566
  2. Matteo Bernabo

    Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Karim Nader

    Department of Psychology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada (203523)

  • Karim Nader

Canadian Institutes of Health Research (238757)

  • Karim Nader

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mihaela D Iordanova, Concordia University, Canada

Ethics

Animal experimentation: All procedures were approved by McGill's Animal Care Committee (Animal Use Protocol #2000-4512) and complied with the Canadian Council on Animal Care guidelines.

Version history

  1. Received: March 17, 2020
  2. Accepted: May 18, 2020
  3. Accepted Manuscript published: May 18, 2020 (version 1)
  4. Version of Record published: June 16, 2020 (version 2)

Copyright

© 2020, Haubrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,653
    views
  • 558
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josué Haubrich
  2. Matteo Bernabo
  3. Karim Nader
(2020)
Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation
eLife 9:e57010.
https://doi.org/10.7554/eLife.57010

Share this article

https://doi.org/10.7554/eLife.57010

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.