1. Biochemistry and Chemical Biology
Download icon

How to measure and evaluate binding affinities

  1. Inga Jarmoskaite  Is a corresponding author
  2. Ishraq AlSadhan
  3. Pavanapuresan P Vaidyanathan
  4. Daniel Herschlag  Is a corresponding author
  1. Stanford University, United States
Tools and Resources
  • Cited 4
  • Views 18,373
  • Annotations
Cite this article as: eLife 2020;9:e57264 doi: 10.7554/eLife.57264
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Quantitative measurements of biomolecule associations are central to biological understanding and are needed to build and test predictive and mechanistic models. Given the advances in high-throughput technologies and the projected increase in the availability of binding data, we found it especially timely to evaluate the current standards for performing and reporting binding measurements. A review of 100 studies revealed that in most cases essential controls for establishing the appropriate incubation time and concentration regime were not documented, making it impossible to determine measurement reliability. Moreover, several reported affinities could be concluded to be incorrect, thereby impacting biological interpretations. Given these challenges, we provide a framework for a broad range of researchers to evaluate, teach about, perform, and clearly document high-quality equilibrium binding measurements. We apply this framework and explain underlying fundamental concepts through experimental examples with the RNA-binding protein Puf4.

Data availability

No datasets were generated in this work. The figures include all data, or, where most appropriate for clarity, representative data from a single experiment for every type of experiment performed.

Article and author information

Author details

  1. Inga Jarmoskaite

    Department of Biochemistry, Stanford University, Stanford, United States
    For correspondence
    ijarmosk@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5847-5867
  2. Ishraq AlSadhan

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pavanapuresan P Vaidyanathan

    Department of Biochemistry, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Herschlag

    Department of Biochemistry, Stanford University, Stanford, United States
    For correspondence
    herschla@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4685-1973

Funding

National Institutes of Health (R01 GM132899)

  • Daniel Herschlag

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sebastian Deindl, Uppsala University, Sweden

Publication history

  1. Received: March 26, 2020
  2. Accepted: August 5, 2020
  3. Accepted Manuscript published: August 6, 2020 (version 1)
  4. Version of Record published: August 27, 2020 (version 2)

Copyright

© 2020, Jarmoskaite et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,373
    Page views
  • 2,191
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Hongki Song et al.
    Research Article

    Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/aSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 will drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE which face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Wan Hua Li et al.
    Research Article

    SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red-shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.