Tuning of olfactory cortex ventral tenia tecta neurons to distinct task elements of goal-directed behavior

  1. Kazuki Shiotani
  2. Yuta Tanisumi
  3. Koshi Murata
  4. Junya Hirokawa
  5. Yoshio Sakurai
  6. Hiroyuki Manabe  Is a corresponding author
  1. Graduate School of Brain Science, Doshisha University, Japan
  2. Faculty of Medical Sciences, University of Fukui, Japan
  3. Doshisha University, Japan

Abstract

The ventral tenia tecta (vTT) is a component of the olfactory cortex and receives both bottom-up odor signals and top-down signals. However, the roles of the vTT in odor-coding and integration of inputs are poorly understood. Here, we investigated the involvement of the vTT in these processes by recording the activity from individual vTT neurons during the performance of learned odor-guided reward-directed tasks in mice. We report that individual vTT cells are highly tuned to a specific behavioral epoch of learned tasks, whereby the duration of increased firing correlated with the temporal length of the behavioral epoch. The peak time for increased firing among recorded vTT cells encompassed almost the entire temporal window of the tasks. Collectively, our results indicate that vTT cells are selectively activated during a specific behavioral context and that the function of the vTT changes dynamically in a context-dependent manner during goal-directed behaviors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.Source data files have been provided for Figure 2, 3, 5 and 6.

Article and author information

Author details

  1. Kazuki Shiotani

    Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5596-5609
  2. Yuta Tanisumi

    Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Koshi Murata

    Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Junya Hirokawa

    Graduate School of Brain Science, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1238-5713
  5. Yoshio Sakurai

    Graduate School of Brain Science, Doshisha University, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hiroyuki Manabe

    Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    For correspondence
    hmanabe@mail.doshisha.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3910-4849

Funding

Japan Society for the Promotion of Science (Grant-in-Aid for JSPS Fellows 18J21358)

  • Kazuki Shiotani

Japan Society for the Promotion of Science (Grant-in-Aid for Challenging Exploratory Research 16K14557)

  • Hiroyuki Manabe

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas 25135708)

  • Hiroyuki Manabe

Takeda Science Foundation

  • Hiroyuki Manabe

Narishige Neuroscience Research Foundation

  • Hiroyuki Manabe

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research(A) 16H02061)

  • Yoshio Sakurai

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas 18H05088)

  • Yoshio Sakurai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: Animal experiments were approved and performed in accordance with the guidelines for the care and use of laboratory animals established by the Committee for Animal Care (Permit Number: A15089, A16013, A17007, A18011) of Doshisha University. All efforts were made to minimize animal suffering and the number of animals used.

Copyright

© 2020, Shiotani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazuki Shiotani
  2. Yuta Tanisumi
  3. Koshi Murata
  4. Junya Hirokawa
  5. Yoshio Sakurai
  6. Hiroyuki Manabe
(2020)
Tuning of olfactory cortex ventral tenia tecta neurons to distinct task elements of goal-directed behavior
eLife 9:e57268.
https://doi.org/10.7554/eLife.57268

Share this article

https://doi.org/10.7554/eLife.57268

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.