PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate

  1. Clément Menuet  Is a corresponding author
  2. Angela A Connelly
  3. Jaspreet K Bassi
  4. Mariana R Melo
  5. Sheng Le
  6. Jessica Kamar
  7. Natasha N Kumar
  8. Stuart J McDougall
  9. Simon McMullan
  10. Andrew M Allen  Is a corresponding author
  1. Institut de Neurobiologie de la Méditerranée, France
  2. University of Melbourne, Australia
  3. Macquarie University, Australia
  4. University of New South Wales, Australia
  5. Florey Institute of Neuroscience and Mental Health, Australia

Abstract

Heart rate and blood pressure oscillate in phase with respiratory activity. A component of these oscillations is generated centrally, with respiratory neurons entraining the activity of pre-sympathetic and parasympathetic cardiovascular neurons. Using a combination of optogenetic inhibition and excitation in vivo and in situ in rats, as well as neuronal tracing, we demonstrate that preBötzinger Complex (preBötC) neurons, which form the kernel for inspiratory rhythm generation, directly modulate cardiovascular activity. Specifically, inhibitory preBötC neurons modulate cardiac parasympathetic neuron activity whilst excitatory preBötC neurons modulate sympathetic vasomotor neuron activity, generating heart rate and blood pressure oscillations in phase with respiration. Our data reveal yet more functions entrained to the activity of the preBötC, with a role in generating cardiorespiratory oscillations. The findings have implications for cardiovascular pathologies, such as hypertension and heart failure, where respiratory entrainment of heart rate is diminished and respiratory entrainment of blood pressure exaggerated.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data and statistics files have been provided for Figures 2, 3, 4, 5, 6, 7 and 8.

Article and author information

Author details

  1. Clément Menuet

    INSERM U1249, Institut de Neurobiologie de la Méditerranée, Marseille, France
    For correspondence
    clement.menuet@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7419-6427
  2. Angela A Connelly

    Department of Physiology, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jaspreet K Bassi

    Department of Physiology, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Mariana R Melo

    Department of Physiology, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Sheng Le

    Faculty of Medicine & Health Sciences, Macquarie University, Macquarie University, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jessica Kamar

    Department of Physiology, University of Melbourne, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Natasha N Kumar

    Department of Pharmacology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Stuart J McDougall

    Systems Neurophysiology, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8778-675X
  9. Simon McMullan

    Faculty of Medicine & Health Sciences, Macquarie University, Macquarie University, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew M Allen

    Department of Physiology, University of Melbourne, Parkville, Australia
    For correspondence
    a.allen@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2183-5360

Funding

National Health and Medical Research Council (App #1120477)

  • Clément Menuet
  • Simon McMullan
  • Andrew M Allen

National Health and Medical Research Council (App #1156727)

  • Clément Menuet
  • Simon McMullan
  • Andrew M Allen

Australian Research Council (DP120100920)

  • Simon McMullan
  • Andrew M Allen

Australian Research Council (DP170104582)

  • Andrew M Allen

University of Melbourne (-McKenzie Research Fellowship)

  • Clément Menuet

Fondation pour la Recherche Médicale (Fellowship ARF20160936221)

  • Clément Menuet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in accordance with the Australian National Health and Medical Research Council 'Code of Practice for the Care and Use of Animals for Scientific Purposes' and were approved by the University of Melbourne Animal Research Ethics and Biosafety Committees (ethics ID #1413273, #1614009, #1814599 and Florey 16-040).

Copyright

© 2020, Menuet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,033
    views
  • 625
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clément Menuet
  2. Angela A Connelly
  3. Jaspreet K Bassi
  4. Mariana R Melo
  5. Sheng Le
  6. Jessica Kamar
  7. Natasha N Kumar
  8. Stuart J McDougall
  9. Simon McMullan
  10. Andrew M Allen
(2020)
PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate
eLife 9:e57288.
https://doi.org/10.7554/eLife.57288

Share this article

https://doi.org/10.7554/eLife.57288

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.