Abstract

Genome-wide association studies identified the BIN1 locus as a leading modulator of genetic risk in Alzheimer's disease (AD). One limitation in understanding BIN1's contribution to AD is its unknown function in the brain. AD-associated BIN1 variants are generally noncoding and likely change expression. Here, we determined the effects of increasing expression of the major neuronal isoform of human BIN1 in cultured rat hippocampal neurons. Higher BIN1 induced network hyperexcitability on multielectrode arrays, increased frequency of synaptic transmission, and elevated calcium transients, indicating that increasing BIN1 drives greater neuronal activity. In exploring the mechanism of these effects on neuronal physiology, we found that BIN1 interacted with L-type voltage-gated calcium channels (LVGCCs) and that BIN1–LVGCC interactions were modulated by Tau in rat hippocampal neurons and mouse brain. Finally, Tau reduction prevented BIN1-induced network hyperexcitability. These data shed light on BIN1's neuronal function and suggest that it may contribute to Tau-dependent hyperexcitability in AD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 6: high throughput raw electrophysiologic recordings of neuronal activity using Axion Biosciences Maesto are deposited at: https://uab.box.com/s/rdjp74ba7stgb2dfrxgbyj507b94tjhn.Brief Analysis used is described in the methods section, in-depth analysis description is publicly available at: https://www.axionbiosystems.com/products/axis-software.

Article and author information

Author details

  1. Yuliya Voskobiynyk

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  2. Jonathan R Roth

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8978-4507
  3. J Nicholas Cochran

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  4. Travis Rush

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  5. Nancy VN Carullo

    Neurology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9197-5046
  6. Jacob S Mesina

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  7. Mohammad Waqas

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  8. Rachael M Vollmer

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  9. Jeremy J Day

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7361-3399
  10. Lori L McMahon

    Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1104-6584
  11. Erik D Roberson

    Neurology, Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    eroberson@uabmc.edu
    Competing interests
    Erik D Roberson, EDR is an owner of intellectual property relating to Tau.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1810-9763

Funding

National Institutes of Health (RF1AG059405)

  • Erik D Roberson

National Institutes of Health (R01NS075487)

  • Erik D Roberson

National Institutes of Health (R01MH114990)

  • Jeremy J Day

National Institutes of Health (T32NS095775)

  • Yuliya Voskobiynyk

National Institutes of Health (T32NS061788)

  • Jonathan R Roth

Alzheimer's Association

  • Erik D Roberson

Weston Brain Institute

  • Jonathan R Roth
  • Travis Rush
  • Erik D Roberson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John D. Fryer, Mayo Clinic, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20450) of the University of Alabama at Birmingham. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Alabama at Birmingham.

Version history

  1. Received: March 29, 2020
  2. Accepted: July 12, 2020
  3. Accepted Manuscript published: July 13, 2020 (version 1)
  4. Version of Record published: July 30, 2020 (version 2)

Copyright

© 2020, Voskobiynyk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,189
    views
  • 582
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuliya Voskobiynyk
  2. Jonathan R Roth
  3. J Nicholas Cochran
  4. Travis Rush
  5. Nancy VN Carullo
  6. Jacob S Mesina
  7. Mohammad Waqas
  8. Rachael M Vollmer
  9. Jeremy J Day
  10. Lori L McMahon
  11. Erik D Roberson
(2020)
Alzheimer's disease risk gene BIN1 induces Tau-dependent network hyperexcitability
eLife 9:e57354.
https://doi.org/10.7554/eLife.57354

Share this article

https://doi.org/10.7554/eLife.57354

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.