Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration

  1. Ines Lahmann
  2. Joscha Griger
  3. Jie-Shin Chen
  4. Yao Zhang
  5. Markus Schülke
  6. Carmen Birchmeier-Kohler  Is a corresponding author
  1. Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Germany
  2. Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Germany
  3. Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, Germany

Abstract

Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.

Data availability

Data are available in the Article, Supplementary Information or from the corresponding authors (CB) upon reasonable request. Source data are provided with this paper.

Article and author information

Author details

  1. Ines Lahmann

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    No competing interests declared.
  2. Joscha Griger

    Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Jie-Shin Chen

    Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
    Competing interests
    Jie-Shin Chen, Jie-Shin Chen is now affiliated with AstraZeneca; all work for this manuscript was conducted while affiliated with Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society.
  4. Yao Zhang

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. Markus Schülke

    Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Carmen Birchmeier-Kohler

    Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
    For correspondence
    cbirch@mdc-berlin.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-8872

Funding

Deutsche Forschungsgemeinschaft

  • Carmen Birchmeier-Kohler

AFM

  • Carmen Birchmeier-Kohler

Klinische Forschergruppe KFO 192

  • Carmen Birchmeier-Kohler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted according to regulations established by the Max-Delbrück- Center for Molecular Medicine (MDC) and the Landesamt für Gesundheit und Soziales (0320/10; 0130/13).

Reviewing Editor

  1. Gabrielle Kardon, University of Utah, United States

Publication history

  1. Received: March 29, 2020
  2. Accepted: August 4, 2021
  3. Accepted Manuscript published: August 5, 2021 (version 1)
  4. Version of Record published: August 17, 2021 (version 2)
  5. Version of Record updated: August 18, 2021 (version 3)

Copyright

© 2021, Lahmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 888
    Page views
  • 135
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ines Lahmann
  2. Joscha Griger
  3. Jie-Shin Chen
  4. Yao Zhang
  5. Markus Schülke
  6. Carmen Birchmeier-Kohler
(2021)
Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration
eLife 10:e57356.
https://doi.org/10.7554/eLife.57356

Further reading

    1. Developmental Biology
    Yulong Liu et al.
    Research Article

    Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 dpf). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA sequencing studies which identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function and the transcriptome profiles will provide a valuable resource for future studies.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Giacomo Leon Glotzer et al.
    Research Article

    The expression of Fibroblast growth factors (Fgf) ligands in a specialized epithelial compartment, the Apical Ectodermal Ridge (AER), is a conserved feature of limb development across vertebrate species. In vertebrates, Fgf 4, 8, 9, and 17 are all expressed in the AER. An exception to this paradigm is the salamander (axolotl) developing and regenerating limb, where key Fgf ligands are expressed in the mesenchyme. The mesenchymal expression of Amex.Fgf8 in axolotl has been suggested to be critical for regeneration. To date, there is little knowledge regarding what controls Amex.Fgf8 expression in the axolotl limb mesenchyme. A large body of mouse and chick studies have defined a set of transcription factors and canonical Wnt signaling as the main regulators of epidermal Fgf8 expression in these organisms. In this study, we address the hypothesis that alterations to one or more of these components during evolution has resulted in mesenchymal Amex.Fgf8 expression in the axolotl. To sensitively quantify gene expression with spatial precision, we combined optical clearing of whole-mount axolotl limb tissue with single molecule fluorescen in situ hybridization and a semi-automated quantification pipeline. Several candidate upstream components were found expressed in the axolotl ectoderm, indicating that they are not direct regulators of Amex.Fgf8 expression. We found that Amex.Wnt3a is expressed in axolotl limb epidermis, similarly to chicken and mouse. However, unlike in amniotes, Wnt target genes are activated preferentially in limb mesenchyme rather than in epidermis. Inhibition and activation of Wnt signaling results in downregulation and upregulation of mesenchymal Amex.Fgf8 expression respectively. These results implicate a shift in tissue responsiveness to canonical Wnt signaling from epidermis to mesenchyme as one step contributing to the unique mesenchymal Amex.Fgf8 expression seen in the axolotl.