Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration

  1. Ines Lahmann
  2. Joscha Griger
  3. Jie-Shin Chen
  4. Yao Zhang
  5. Markus Schülke
  6. Carmen Birchmeier-Kohler  Is a corresponding author
  1. Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Germany
  2. Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Germany
  3. Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, Germany

Abstract

Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.

Data availability

Data are available in the Article, Supplementary Information or from the corresponding authors (CB) upon reasonable request. Source data are provided with this paper.

Article and author information

Author details

  1. Ines Lahmann

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    No competing interests declared.
  2. Joscha Griger

    Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Jie-Shin Chen

    Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
    Competing interests
    Jie-Shin Chen, Jie-Shin Chen is now affiliated with AstraZeneca; all work for this manuscript was conducted while affiliated with Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society.
  4. Yao Zhang

    Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
    Competing interests
    No competing interests declared.
  5. Markus Schülke

    Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Carmen Birchmeier-Kohler

    Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
    For correspondence
    cbirch@mdc-berlin.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-8872

Funding

Deutsche Forschungsgemeinschaft

  • Carmen Birchmeier-Kohler

AFM

  • Carmen Birchmeier-Kohler

Klinische Forschergruppe KFO 192

  • Carmen Birchmeier-Kohler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted according to regulations established by the Max-Delbrück- Center for Molecular Medicine (MDC) and the Landesamt für Gesundheit und Soziales (0320/10; 0130/13).

Copyright

© 2021, Lahmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,422
    views
  • 222
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ines Lahmann
  2. Joscha Griger
  3. Jie-Shin Chen
  4. Yao Zhang
  5. Markus Schülke
  6. Carmen Birchmeier-Kohler
(2021)
Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration
eLife 10:e57356.
https://doi.org/10.7554/eLife.57356

Share this article

https://doi.org/10.7554/eLife.57356

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.