Infant and adult SCA13 mutations differentially affect Purkinje cell excitability, maturation, and viability in vivo

  1. Jui-Yi Hsieh
  2. Brittany N Ulrich
  3. Fadi A Issa
  4. Meng-chin A Lin
  5. Brandon Brown
  6. Diane M Papazian  Is a corresponding author
  1. Geffen School of Medicine at UCLA, United States
  2. East Carolina University, United States

Abstract

Mutations in KCNC3, which encodes the Kv3.3 K+ channel, cause spinocerebellar ataxia 13 (SCA13). SCA13 exists in distinct forms with onset in infancy or adulthood. Using zebrafish, we tested the hypothesis that infant- and adult-onset mutations differentially affect the excitability and viability of Purkinje cells in vivo during cerebellar development. An infant-onset mutation dramatically and transiently increased Purkinje cell excitability, stunted process extension, impaired dendritic branching and synaptogenesis, and caused rapid cell death during cerebellar development. Reducing excitability increased early Purkinje cell survival. In contrast, an adult-onset mutation did not significantly alter basal tonic firing in Purkinje cells, but reduced excitability during evoked high frequency spiking. Purkinje cells expressing the adult-onset mutation matured normally and did not degenerate during cerebellar development. Our results suggest that differential changes in the excitability of cerebellar neurons contribute to the distinct ages of onset and timing of cerebellar degeneration in infant- and adult-onset SCA13.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jui-Yi Hsieh

    Physiology, Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brittany N Ulrich

    Physiology, Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fadi A Issa

    Biology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5234-5850
  4. Meng-chin A Lin

    Physiology, Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brandon Brown

    Physiology, Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Diane M Papazian

    Physiology, Geffen School of Medicine at UCLA, Los Angeles, United States
    For correspondence
    papazian@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8194-5740

Funding

National Institutes of Health (R01 NS058500)

  • Diane M Papazian

National Ataxia Foundation (NA)

  • Fadi A Issa

UCLA Stein Oppenheimer Seed Grant (NA)

  • Diane M Papazian

UCLA Jennifer Buchwald Graduate Fellowship (NA)

  • Jui-Yi Hsieh
  • Brittany N Ulrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie A Kauer, Stanford University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of California, Los Angeles. The protocols were approved by the Chancellor's Animal Research Committee (#2005-176 and #1991-329). All surgery was performed under MS-222 anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: March 29, 2020
  2. Accepted: July 8, 2020
  3. Accepted Manuscript published: July 9, 2020 (version 1)
  4. Version of Record published: July 28, 2020 (version 2)

Copyright

© 2020, Hsieh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,419
    views
  • 189
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jui-Yi Hsieh
  2. Brittany N Ulrich
  3. Fadi A Issa
  4. Meng-chin A Lin
  5. Brandon Brown
  6. Diane M Papazian
(2020)
Infant and adult SCA13 mutations differentially affect Purkinje cell excitability, maturation, and viability in vivo
eLife 9:e57358.
https://doi.org/10.7554/eLife.57358

Share this article

https://doi.org/10.7554/eLife.57358

Further reading

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.