In vivo transcriptomic profiling using cell encapsulation identifieseffector pathways of systemic aging

Abstract

Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus (GEO). GEO Series accession numbers are GSE111401, GSE81096 and GSE193665.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Omid Mashinchian

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Omid Mashinchian, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  2. Xiaotong Hong

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Xiaotong Hong, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  3. Joris Michaud

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Joris Michaud, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  4. Eugenia Migliavacca

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Eugenia Migliavacca, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  5. Gregory Lefebvre

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Gregory Lefebvre, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  6. Christophe Boss

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Christophe Boss, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  7. Filippo De Franceschi

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Filippo De Franceschi, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  8. Emmeran Le Moal

    Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    No competing interests declared.
  9. Jasmin Collerette-Tremblay

    Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    No competing interests declared.
  10. Joan Isern

    Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1401-9779
  11. Sylviane Metairon

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Sylviane Metairon, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  12. Frederic Raymond

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Frederic Raymond, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  13. Patrick Descombes

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Patrick Descombes, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  14. Nicolas Bouche

    Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
    Competing interests
    Nicolas Bouche, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
  15. Pura Muñoz-Cánoves

    Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
    Competing interests
    No competing interests declared.
  16. Jerome N Feige

    Nestlé Institute of Health Science, Nestlé Research, Lausanne, Switzerland
    For correspondence
    jerome.feige@rd.nestle.com
    Competing interests
    Jerome N Feige, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4751-264X
  17. C Florian Bentzinger

    Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    cf.bentzinger@usherbrooke.ca
    Competing interests
    C Florian Bentzinger, Presently or previously employed by the Société des Produits Nestlé S.A., Switzerland.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0422-9622

Funding

Canadian Institutes of Health Research (PJT-162442)

  • C Florian Bentzinger

Association Française contre les Myopathies (AFM)

  • Pura Muñoz-Cánoves

MWRF (MWRF)

  • Pura Muñoz-Cánoves

Maria de Maeztu Unit of Excellence award to UPF (MDM-2014-0370)

  • Pura Muñoz-Cánoves

Severo Ochoa Center of Excellence award to the CNIC (SEV-2015-0505)

  • Pura Muñoz-Cánoves

Severo Ochoa FPI predoctoral fellowship (SEV-2015-0505-17-1))

  • Xiaotong Hong

National Science and Research Council of Canada (RGPIN-2017-05490)

  • C Florian Bentzinger

Fonds de Recherche du Québec - Santé (Dossiers 296357,34813,and 36789)

  • C Florian Bentzinger

Centre de Recherche Médicale de l'Université de Sherbrooke (CRMUS Chair)

  • C Florian Bentzinger

European Research Council (ERC-2016-AdG-741966)

  • Pura Muñoz-Cánoves

La Caixa Foundation (La Caixa-HEALTH-HR17-00040)

  • Pura Muñoz-Cánoves

Muscular Dystrophy Association (MDA)

  • Pura Muñoz-Cánoves

H2020 (UPGRADE-H2020-825825)

  • Pura Muñoz-Cánoves

Programa Estatal de Investigacion (RTI2018-096068-B-I00)

  • Pura Muñoz-Cánoves

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the Swiss regulation on animal experimentation and the European Community Council directive (86/609/EEC) for the care and use of laboratory animals. Experiments were approved by the Vaud cantonal authorities under license VD3085, and by the Animal Care and Ethics Committee of the Spanish National Cardiovascular Research Center (CNIC) and regional authorities.

Copyright

© 2022, Mashinchian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,252
    views
  • 339
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omid Mashinchian
  2. Xiaotong Hong
  3. Joris Michaud
  4. Eugenia Migliavacca
  5. Gregory Lefebvre
  6. Christophe Boss
  7. Filippo De Franceschi
  8. Emmeran Le Moal
  9. Jasmin Collerette-Tremblay
  10. Joan Isern
  11. Sylviane Metairon
  12. Frederic Raymond
  13. Patrick Descombes
  14. Nicolas Bouche
  15. Pura Muñoz-Cánoves
  16. Jerome N Feige
  17. C Florian Bentzinger
(2022)
In vivo transcriptomic profiling using cell encapsulation identifieseffector pathways of systemic aging
eLife 11:e57393.
https://doi.org/10.7554/eLife.57393

Share this article

https://doi.org/10.7554/eLife.57393

Further reading

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.