Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila

  1. Qin Wang
  2. Huaxun Fan
  3. Feng Li
  4. Savanna S Skeeters
  5. Vishnu V Krishnamurthy
  6. Yuanquan Song  Is a corresponding author
  7. Kai Zhang  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Illinois at Urbana-Champaign, United States

Abstract

Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qin Wang

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Huaxun Fan

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Feng Li

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Savanna S Skeeters

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vishnu V Krishnamurthy

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9905-5965
  6. Yuanquan Song

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    songy2@email.chop.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7699-2059
  7. Kai Zhang

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    kaizkaiz@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6687-4558

Funding

National Institute of General Medical Sciences (R01GM132438)

  • Huaxun Fan
  • Savanna S Skeeters
  • Vishnu V Krishnamurthy
  • Kai Zhang

National Institute of Neurological Disorders and Stroke (1R01NS107392)

  • Qin Wang
  • Feng Li
  • Yuanquan Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Moses V Chao, New York University Langone Medical Center, United States

Ethics

Animal experimentation: The experimental procedures have been approved by the Institutional Biosafety Committee (IBC) at the Children's Hospital of Philadelphia.

Version history

  1. Received: March 30, 2020
  2. Accepted: September 15, 2020
  3. Accepted Manuscript published: October 6, 2020 (version 1)
  4. Version of Record published: October 16, 2020 (version 2)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,826
    views
  • 417
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qin Wang
  2. Huaxun Fan
  3. Feng Li
  4. Savanna S Skeeters
  5. Vishnu V Krishnamurthy
  6. Yuanquan Song
  7. Kai Zhang
(2020)
Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila
eLife 9:e57395.
https://doi.org/10.7554/eLife.57395

Share this article

https://doi.org/10.7554/eLife.57395

Further reading

    1. Neuroscience
    Max Schulz, Malte Wöstmann
    Insight

    Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.

    1. Neuroscience
    Tara Ghafari, Cecilia Mazzetti ... Ole Jensen
    Research Article

    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.