Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila

  1. Qin Wang
  2. Huaxun Fan
  3. Feng Li
  4. Savanna S Skeeters
  5. Vishnu V Krishnamurthy
  6. Yuanquan Song  Is a corresponding author
  7. Kai Zhang  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Illinois at Urbana-Champaign, United States

Abstract

Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qin Wang

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Huaxun Fan

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Feng Li

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Savanna S Skeeters

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vishnu V Krishnamurthy

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9905-5965
  6. Yuanquan Song

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    songy2@email.chop.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7699-2059
  7. Kai Zhang

    Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    kaizkaiz@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6687-4558

Funding

National Institute of General Medical Sciences (R01GM132438)

  • Huaxun Fan
  • Savanna S Skeeters
  • Vishnu V Krishnamurthy
  • Kai Zhang

National Institute of Neurological Disorders and Stroke (1R01NS107392)

  • Qin Wang
  • Feng Li
  • Yuanquan Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental procedures have been approved by the Institutional Biosafety Committee (IBC) at the Children's Hospital of Philadelphia.

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,951
    views
  • 429
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qin Wang
  2. Huaxun Fan
  3. Feng Li
  4. Savanna S Skeeters
  5. Vishnu V Krishnamurthy
  6. Yuanquan Song
  7. Kai Zhang
(2020)
Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila
eLife 9:e57395.
https://doi.org/10.7554/eLife.57395

Share this article

https://doi.org/10.7554/eLife.57395

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.