EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma

  1. Ananya Pal
  2. Jia Yu Leung
  3. Gareth Chin Khye Ang
  4. Vinay Kumar Rao
  5. Luca Pignata
  6. Huey Jin Lim
  7. Maxime Hebrard
  8. Kenneth TE Chang
  9. Victor KM Lee
  10. Ernesto Guccione
  11. Reshma Taneja  Is a corresponding author
  1. Yong Loo Lin School of Medicine, National University of Singapore, Singapore
  2. Agency for Science, Technology and Research (A*STAR), Singapore
  3. KK Women and Childrens Hospital, Singapore

Abstract

Wnt signaling is down-regulated in embryonal rhabdomyosarcoma (ERMS) and contributes to the block of differentiation. Epigenetic mechanisms leading to its suppression are unknown and could pave the way towards novel therapeutic modalities. We demonstrate that EHMT2 suppresses canonical Wnt signaling by activating expression of the Wnt antagonist DKK1. Inhibition of EHMT2 expression or activity in human ERMS cell lines reduced DKK1 expression and elevated canonical Wnt signaling resulting in myogenic differentiation in vitro and in mouse xenograft models in vivo. Mechanistically, EHMT2 impacted Sp1 and p300 enrichment at the DKK1 promoter. The reduced tumor growth upon EHMT2 deficiency was reversed by recombinant DKK1 or LGK974, which also inhibits Wnt signaling. Consistently, among thirteen drugs targeting chromatin modifiers, EHMT2 inhibitors were highly effective in reducing ERMS cell viability. Our study demonstrates that ERMS cells are vulnerable to EHMT2 inhibitors and suggest that targeting the EHMT2-DKK1-b-catenin node holds promise for differentiation therapy.

Data availability

ChIP-Seq data has been deposited in GEO under the accession number GSE125960.RNA-Seq data been deposited in GEO under the accession number GSE142975.

The following data sets were generated

Article and author information

Author details

  1. Ananya Pal

    Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Jia Yu Leung

    Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Gareth Chin Khye Ang

    Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Vinay Kumar Rao

    Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Luca Pignata

    Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Huey Jin Lim

    Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Maxime Hebrard

    Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenneth TE Chang

    Pathology, KK Women and Childrens Hospital, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5244-4285
  9. Victor KM Lee

    Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Ernesto Guccione

    Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Reshma Taneja

    Phsyiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    For correspondence
    phsrt@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6214-6177

Funding

National Medical Research Council (NMRC/OFIRG/0073/2018)

  • Ernesto Guccione
  • Reshma Taneja

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures used in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at the National University of Singapore under the protocol # R18-0208.

Copyright

© 2020, Pal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,623
    views
  • 217
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ananya Pal
  2. Jia Yu Leung
  3. Gareth Chin Khye Ang
  4. Vinay Kumar Rao
  5. Luca Pignata
  6. Huey Jin Lim
  7. Maxime Hebrard
  8. Kenneth TE Chang
  9. Victor KM Lee
  10. Ernesto Guccione
  11. Reshma Taneja
(2020)
EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma
eLife 9:e57683.
https://doi.org/10.7554/eLife.57683

Share this article

https://doi.org/10.7554/eLife.57683

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.