Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration

Abstract

N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl transferase (NMT) has been proposed as an attractive drug target in several pathogens. Myristoylation often primes for subsequent palmitoylation and stable membrane attachment, however, growing evidence suggests additional regulatory roles for myristoylation on proteins. Here we describe the myristoylated proteome of Toxoplasma gondii using chemoproteomic methods and show that a small-molecule NMT inhibitor developed against related Plasmodium spp. is also functional in Toxoplasma. We identify myristoylation on a transmembrane protein, the microneme protein 7 (MIC7), which enters the secretory pathway in an unconventional fashion with the myristoylated N-terminus facing the lumen of the micronemes. MIC7 and its myristoylation play a crucial role in the initial steps of invasion, likely during the interaction with and penetration of the host cell. Myristoylation of secreted eukaryotic proteins represents a substantial expansion of the functional repertoire of this co-translational modification.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 5, 6 and 7. Source data for mass spectrometry proteomics results can be found in Supplementary files 1-4. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD019677.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Malgorzata Broncel

    Signalling in Apicomplexan Parasites Lab, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2991-3500
  2. Caia Dominicus

    Signalling in Apicomplexan Parasites Lab, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Luis Vigetti

    Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9733-2770
  4. Stephanie D Nofal

    Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1415-3369
  5. Edward J Bartlett

    Department of Chemistry, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Bastien Touquet

    Team Membrane and Cell Dynamics of Host Parasite Interactions, Université Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
  7. Alex Hunt

    Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7431-7156
  8. Bethan Alexandra Wallbank

    Signalling in Apicomplexan Parasites Lab, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6432-2135
  9. Stefania Federico

    Peptide Synthesis STP, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. Stephen Matthews

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0676-0927
  11. Joanna Claire Young

    Signalling in Apicomplexan Parasites Lab, The Francis Crick Institute, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Edward W Tate

    Department of Chemistry, Imperial College London, London, United Kingdom
    Competing interests
    Edward W Tate, EWT is a founder, shareholder and Director of Myricx Pharma Ltd.
  13. Isabelle Tardieux

    Team Membrane and Cell Dynamics of Host Parasite Interactions, Université Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5677-7463
  14. Moritz Treeck

    Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    moritz.treeck@crick.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9727-6657

Funding

Francis Crick Institute (FC001189)

  • Malgorzata Broncel
  • Caia Dominicus
  • Stephanie D Nofal
  • Alex Hunt
  • Bethan Alexandra Wallbank
  • Joanna Claire Young
  • Moritz Treeck

NIH Office of the Director (R01AI123457)

  • Malgorzata Broncel
  • Caia Dominicus
  • Moritz Treeck

Leverhulme Trust (RPG-2018-107)

  • Stephen Matthews

Cancer Research UK (C29637/A20183)

  • Edward J Bartlett
  • Edward W Tate

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: April 14, 2020
  2. Accepted: June 27, 2020
  3. Accepted Manuscript published: July 3, 2020 (version 1)
  4. Version of Record published: July 21, 2020 (version 2)

Copyright

© 2020, Broncel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,321
    views
  • 314
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Malgorzata Broncel
  2. Caia Dominicus
  3. Luis Vigetti
  4. Stephanie D Nofal
  5. Edward J Bartlett
  6. Bastien Touquet
  7. Alex Hunt
  8. Bethan Alexandra Wallbank
  9. Stefania Federico
  10. Stephen Matthews
  11. Joanna Claire Young
  12. Edward W Tate
  13. Isabelle Tardieux
  14. Moritz Treeck
(2020)
Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration
eLife 9:e57861.
https://doi.org/10.7554/eLife.57861

Share this article

https://doi.org/10.7554/eLife.57861

Further reading

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.