Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium

  1. Jan Niklas Hansen
  2. Fabian Kaiser
  3. Christina Klausen
  4. Birthe Stüven
  5. Raymond Chong
  6. Wolfgang Bönigk
  7. David U Mick
  8. Andreas Möglich
  9. Nathalie Jurisch-Yaksi
  10. Florian I Schmidt  Is a corresponding author
  11. Dagmar Wachten  Is a corresponding author
  1. University of Bonn, Institute of Innate Immunity, Medical Faculty, Germany
  2. Center of Advanced European Studies and Research, Germany
  3. Saarland University School of Medicine, Germany
  4. Universität Bayreuth, Germany
  5. Norwegian University of Science and Technology, Norway
  6. University of Bonn, Medical Faculty, Germany

Abstract

Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and are available through the following doi 10.6084/m9.figshare.c.4792248. The analysis workflow to study cilia length and fluorescence signal with its custom-written ImageJ plug-ins ('CiliaQ') is available through the following link https://github.com/hansenjn/CiliaQ.

The following data sets were generated

Article and author information

Author details

  1. Jan Niklas Hansen

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0489-7535
  2. Fabian Kaiser

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Christina Klausen

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Birthe Stüven

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Raymond Chong

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Wolfgang Bönigk

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David U Mick

    Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1427-9412
  8. Andreas Möglich

    Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nathalie Jurisch-Yaksi

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8767-6120
  10. Florian I Schmidt

    Institute of Innate Immunity, University of Bonn, Medical Faculty, Bonn, Germany
    For correspondence
    fschmidt@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9979-9769
  11. Dagmar Wachten

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    For correspondence
    dwachten@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4800-6332

Funding

Deutsche Forschungsgemeinschaft (SPP 1926)

  • Andreas Möglich
  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (SPP1726)

  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (TRR83/SFB)

  • Dagmar Wachten

Deutsche Forschungsgemeinschaftgemeinschaft (Germany's Excellence Strategy - EXC2151 - 390873048)

  • Florian I Schmidt
  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (FOR2743)

  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (Emmy Noether)

  • Florian I Schmidt

Boehringer Ingelheim Fonds (PhD fellowship)

  • Jan Niklas Hansen

Samarbeidsorganet Helse Midt-Norge (grant)

  • Nathalie Jurisch-Yaksi

Deutsche Forschungsgemeinschaft (SFB894/TP-A22)

  • David U Mick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal facilities and maintenance of the zebrafish, Danio rerio, were approved by the Norwegian Food Safety Authority (19/175222).

Copyright

© 2020, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,846
    views
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.57907

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.