Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium

  1. Jan Niklas Hansen
  2. Fabian Kaiser
  3. Christina Klausen
  4. Birthe Stüven
  5. Raymond Chong
  6. Wolfgang Bönigk
  7. David U Mick
  8. Andreas Möglich
  9. Nathalie Jurisch-Yaksi
  10. Florian I Schmidt  Is a corresponding author
  11. Dagmar Wachten  Is a corresponding author
  1. University of Bonn, Institute of Innate Immunity, Medical Faculty, Germany
  2. Center of Advanced European Studies and Research, Germany
  3. Saarland University School of Medicine, Germany
  4. Universität Bayreuth, Germany
  5. Norwegian University of Science and Technology, Norway
  6. University of Bonn, Medical Faculty, Germany

Abstract

Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and are available through the following doi 10.6084/m9.figshare.c.4792248. The analysis workflow to study cilia length and fluorescence signal with its custom-written ImageJ plug-ins ('CiliaQ') is available through the following link https://github.com/hansenjn/CiliaQ.

The following data sets were generated

Article and author information

Author details

  1. Jan Niklas Hansen

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0489-7535
  2. Fabian Kaiser

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Christina Klausen

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Birthe Stüven

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Raymond Chong

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Wolfgang Bönigk

    Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David U Mick

    Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1427-9412
  8. Andreas Möglich

    Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nathalie Jurisch-Yaksi

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8767-6120
  10. Florian I Schmidt

    Institute of Innate Immunity, University of Bonn, Medical Faculty, Bonn, Germany
    For correspondence
    fschmidt@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9979-9769
  11. Dagmar Wachten

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    For correspondence
    dwachten@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4800-6332

Funding

Deutsche Forschungsgemeinschaft (SPP 1926)

  • Andreas Möglich
  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (SPP1726)

  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (TRR83/SFB)

  • Dagmar Wachten

Deutsche Forschungsgemeinschaftgemeinschaft (Germany's Excellence Strategy - EXC2151 - 390873048)

  • Florian I Schmidt
  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (FOR2743)

  • Dagmar Wachten

Deutsche Forschungsgemeinschaft (Emmy Noether)

  • Florian I Schmidt

Boehringer Ingelheim Fonds (PhD fellowship)

  • Jan Niklas Hansen

Samarbeidsorganet Helse Midt-Norge (grant)

  • Nathalie Jurisch-Yaksi

Deutsche Forschungsgemeinschaft (SFB894/TP-A22)

  • David U Mick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal facilities and maintenance of the zebrafish, Danio rerio, were approved by the Norwegian Food Safety Authority (19/175222).

Copyright

© 2020, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,868
    views
  • 792
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Niklas Hansen
  2. Fabian Kaiser
  3. Christina Klausen
  4. Birthe Stüven
  5. Raymond Chong
  6. Wolfgang Bönigk
  7. David U Mick
  8. Andreas Möglich
  9. Nathalie Jurisch-Yaksi
  10. Florian I Schmidt
  11. Dagmar Wachten
(2020)
Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium
eLife 9:e57907.
https://doi.org/10.7554/eLife.57907

Share this article

https://doi.org/10.7554/eLife.57907

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.