Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium
Abstract
Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
Data availability
All data generated or analysed during this study are included in the manuscript and are available through the following doi 10.6084/m9.figshare.c.4792248. The analysis workflow to study cilia length and fluorescence signal with its custom-written ImageJ plug-ins ('CiliaQ') is available through the following link https://github.com/hansenjn/CiliaQ.
-
Nanobody-directed targeting of optogenetic tools to study signaling in the primary ciliumfigshare doi 10.6084/m9.figshare.c.4792248.v1.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (SPP 1926)
- Andreas Möglich
- Dagmar Wachten
Deutsche Forschungsgemeinschaft (SPP1726)
- Dagmar Wachten
Deutsche Forschungsgemeinschaft (TRR83/SFB)
- Dagmar Wachten
Deutsche Forschungsgemeinschaftgemeinschaft (Germany's Excellence Strategy - EXC2151 - 390873048)
- Florian I Schmidt
- Dagmar Wachten
Deutsche Forschungsgemeinschaft (FOR2743)
- Dagmar Wachten
Deutsche Forschungsgemeinschaft (Emmy Noether)
- Florian I Schmidt
Boehringer Ingelheim Fonds (PhD fellowship)
- Jan Niklas Hansen
Samarbeidsorganet Helse Midt-Norge (grant)
- Nathalie Jurisch-Yaksi
Deutsche Forschungsgemeinschaft (SFB894/TP-A22)
- David U Mick
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The animal facilities and maintenance of the zebrafish, Danio rerio, were approved by the Norwegian Food Safety Authority (19/175222).
Copyright
© 2020, Hansen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,852
- views
-
- 792
- downloads
-
- 41
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.
-
- Cell Biology
- Developmental Biology
A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.