Atg1 kinase in fission yeast is activated by Atg11-mediated dimerization and cis-autophosphorylation

  1. Zhao-Qian Pan
  2. Guang-Can Shao
  3. Xiao-Man Liu
  4. Quan Chen
  5. Meng-Qiu Dong
  6. Li-Lin Du  Is a corresponding author
  1. National Institute of Biological Sciences, China

Abstract

Autophagy is a proteolytic pathway conserved from yeasts to mammals. Atg1 kinase is essential for autophagy but how its activity is controlled remains insufficiently understood. Here, we show that, in the fission yeast Schizosaccharomyces pombe, Atg1 kinase activity requires Atg11, the ortholog of mammalian FIP200/RB1CC1, but does not require Atg13, Atg17, or Atg101. Remarkably, a 62-amino-acid region of Atg11 is sufficient for the autophagy function of Atg11 and for supporting the Atg1 kinase activity. This region harbors an Atg1-binding domain and a homodimerization domain. Dimerizing Atg1 is the main role of Atg11, as it can be bypassed by artificially dimerizing Atg1. In an Atg1 dimer, only one Atg1 molecule needs to be catalytically active, suggesting that Atg1 activation can be achieved through cis-autophosphorylation. We propose that mediating Atg1 oligomerization and activation may be a conserved function of Atg11/FIP200 family proteins and cis-autophosphorylation may be a general mechanism of Atg1 activation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Zhao-Qian Pan

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0346-0259
  2. Guang-Can Shao

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiao-Man Liu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9968-3988
  4. Quan Chen

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Meng-Qiu Dong

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6094-1182
  6. Li-Lin Du

    National Institute of Biological Sciences, Beijing, China
    For correspondence
    dulilin@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1028-7397

Funding

National Basic Research Program of China (2014CB849901)

  • Li-Lin Du

National Basic Research Program of China (2014CB849801)

  • Meng-Qiu Dong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claudine Kraft, University of Freiburg, Germany

Version history

  1. Received: April 20, 2020
  2. Accepted: September 10, 2020
  3. Accepted Manuscript published: September 10, 2020 (version 1)
  4. Version of Record published: September 23, 2020 (version 2)

Copyright

© 2020, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,703
    views
  • 332
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhao-Qian Pan
  2. Guang-Can Shao
  3. Xiao-Man Liu
  4. Quan Chen
  5. Meng-Qiu Dong
  6. Li-Lin Du
(2020)
Atg1 kinase in fission yeast is activated by Atg11-mediated dimerization and cis-autophosphorylation
eLife 9:e58073.
https://doi.org/10.7554/eLife.58073

Share this article

https://doi.org/10.7554/eLife.58073

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.