Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix

  1. Danae E Zamboulis  Is a corresponding author
  2. Chavaunne T Thorpe
  3. Yalda Ashraf Kharaz
  4. Helen L Birch
  5. Hazel R C Screen
  6. Peter D Clegg
  1. University of Liverpool, United Kingdom
  2. Royal Veterinary College, United Kingdom
  3. University College London, United Kingdom
  4. Queen Mary University of London, United Kingdom

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danae E Zamboulis
  2. Chavaunne T Thorpe
  3. Yalda Ashraf Kharaz
  4. Helen L Birch
  5. Hazel R C Screen
  6. Peter D Clegg
(2020)
Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix
eLife 9:e58075.
https://doi.org/10.7554/eLife.58075

Share this article

https://doi.org/10.7554/eLife.58075