Bone: A role for fat precursors in the marrow

A group of cells that can become adipocytes controls the formation of blood vessels in the bone marrow, and also regulates the differentiation of resident mesenchymal progenitor cells.
  1. Noriaki Ono  Is a corresponding author
  1. School of Dentistry, University of Michigan, United States

Forget your prejudices against adipocytes – fat cells have important roles to play in the body. This is particularly the case in the bone marrow, where bone and blood are constantly renewed throughout life. The bone marrow provides an interface between bones and the blood – blood cells constantly come and go, while bone cells are long-term inhabitants of the marrow space. Bone cells are derived from so-called bone marrow stromal cells (BMSCs), which are usually found near blood vessels. RNA-seq experiments show that a substantial group of BMSCs express genes normally associated with fat cells (Baccin et al., 2020; Baryawno et al., 2019; Tikhonova et al., 2019; Wolock et al., 2019). Moreover, older bones have an increased amount of fat in their marrow, and a large number of BMSCs express the receptor for leptin, a hormone that is often found in fat cells (Zhou et al., 2014). Yet, the roles that fat cells and their precursors play in the bone marrow environment remain largely unknown.

Now, in eLife, Ling Qin from the University of Pennsylvania and co-workers – including Leilei Zhong as first author – report the discovery of a group of cells in the bone marrow that they have named marrow adipogenic lineage precursor (MALP) cells (Zhong et al., 2020).

First, Zhong et al. performed single-cell RNA-seq on BMSCs from young, adult, and aging mice. They fluorescently labeled these cells (Ono et al., 2014) and then used a computational approach to define several distinct stages of mesenchymal progenitors in their paths to becoming bone cells – osteoblasts – and adipocytes. In particular they discovered the MALP cells, which can become fat cells and increase in number as the mice age. These cells express many genes associated with adipocytes, including adiponectin, but do not yet accumulate lipids.

Strikingly, MALP cells form a vast three-dimensional network surrounding blood vessels in the bone marrow known as sinusoidal vessels. MALP cells express a gene called Adipoq, which is also expressed by subcutaneous fat cells. When cells expressing Adipoq were selectively removed from mice, the sinusoidal vessels were severely disrupted. Moreover, loss of these cells caused a massive increase in bone trabeculae (thin rods and plates of bone tissue) throughout marrow space.

However, it has recently been shown that factors called adipokines, including adiponectin and leptin, which are produced by subcutaneous fat cells, negatively regulate bone formation (Zou et al., 2019). This means that the changes observed in the bone marrow when cells expressing Adipoq are removed could simply be due to the disappearance of subcutaneous fat cells. To test whether this was the case, Zhong et al. transplanted subcutaneous fat into mice and then removed the host cells that expressed Adipoq. The mice now had subcutaneous fat cells, but no MALP cells, and still exhibited disrupted sinusoidal vessels and excess trabeculae. This result demonstrates that the changes observed in the bone marrow upon the removal of cells expressing Adipoq are specifically caused by MALP cell removal. These findings suggest that MALP cells are locally important components of the bone marrow environment, particularly in regulating marrow vasculature and bone formation, perhaps by secreting cytokines (Figure 1).

MALP cells and the formation of bone and blood vessels in the bone marrow (Zhong et al., 2020).

Schematic view of bone (grey) and bone marrow (orange). Bone marrow contains many different types of mesenchymal stromal cells: these include mesenchymal progenitor cells (purple), pre-osteoblasts (green), and pre-adipocytes (red). Mesenchymal progenitor cells and pre-osteoblasts can both give rise to the osteoblasts that line the bone surface (smooth yellow cells) and to the osteocytes that are embedded within the bone (jagged yellow cells). A MALP cell is type of pre-adipocyte, and MALP cells that express a hormone called adiponectin have important roles in: i) maintaining the marrow vasculature (arrow-ended red lines); ii) preventing mesenchymal progenitor cells from differentiating into osteoblasts (flat-ended red lines).

Together with a recent study that demonstrates the importance of pre-adipocyte-like cells in bone regeneration (Matsushita et al., 2020), these findings establish the concept that marrow adipocyte precursors (including MALP cells) play active roles in bone physiology and regeneration. The precise nature of MALP cells still requires further definition. For instance, many types of adipocyte-related cells have been described to date in the bone marrow. Do these cells represent separate or overlapping entities? Do they occupy different locations in bone marrow? If so, does that mean they have different roles? Another important question is whether there is any special feature that determines the identity of marrow adipocytes. How are they different from adipocytes in other areas of the body, and how do they differ metabolically? It is intriguing to think that the adipocyte precursor identity may confer cells with some metabolic advantages to secrete large amounts of cytokines.

References

Article and author information

Author details

  1. Noriaki Ono

    Noriaki Ono is at the School of Dentistry, University of Michigan, Ann Arbor, United States

    For correspondence
    noriono@umich.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3771-8230

Publication history

  1. Version of Record published: May 13, 2020 (version 1)

Copyright

© 2020, Ono

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,092
    Page views
  • 125
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noriaki Ono
(2020)
Bone: A role for fat precursors in the marrow
eLife 9:e58084.
https://doi.org/10.7554/eLife.58084

Further reading

    1. Cell Biology
    2. Medicine
    Eric N Jimenez-Vazquez et al.
    Research Article

    Background:

    Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients.

    Methods:

    To test whether dystrophin mutations lead to defective cardiac NaV1.5–Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays.

    Results:

    Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (INa) and inward rectifier potassium (IK1) currents. Membrane NaV1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, INa and IK1 densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers.

    Conclusions:

    We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the NaV1.5–Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a NaV1.5–Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias.

    Funding:

    Supported by National Institutes of Health R01 HL122352 grant; ‘la Caixa’ Banking Foundation (HR18-00304); Fundación La Marató TV3: Ayudas a la investigación en enfermedades raras 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Tsuyoshi Imasaki et al.
    Research Article

    Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.