Bone: A role for fat precursors in the marrow
Forget your prejudices against adipocytes – fat cells have important roles to play in the body. This is particularly the case in the bone marrow, where bone and blood are constantly renewed throughout life. The bone marrow provides an interface between bones and the blood – blood cells constantly come and go, while bone cells are long-term inhabitants of the marrow space. Bone cells are derived from so-called bone marrow stromal cells (BMSCs), which are usually found near blood vessels. RNA-seq experiments show that a substantial group of BMSCs express genes normally associated with fat cells (Baccin et al., 2020; Baryawno et al., 2019; Tikhonova et al., 2019; Wolock et al., 2019). Moreover, older bones have an increased amount of fat in their marrow, and a large number of BMSCs express the receptor for leptin, a hormone that is often found in fat cells (Zhou et al., 2014). Yet, the roles that fat cells and their precursors play in the bone marrow environment remain largely unknown.
Now, in eLife, Ling Qin from the University of Pennsylvania and co-workers – including Leilei Zhong as first author – report the discovery of a group of cells in the bone marrow that they have named marrow adipogenic lineage precursor (MALP) cells (Zhong et al., 2020).
First, Zhong et al. performed single-cell RNA-seq on BMSCs from young, adult, and aging mice. They fluorescently labeled these cells (Ono et al., 2014) and then used a computational approach to define several distinct stages of mesenchymal progenitors in their paths to becoming bone cells – osteoblasts – and adipocytes. In particular they discovered the MALP cells, which can become fat cells and increase in number as the mice age. These cells express many genes associated with adipocytes, including adiponectin, but do not yet accumulate lipids.
Strikingly, MALP cells form a vast three-dimensional network surrounding blood vessels in the bone marrow known as sinusoidal vessels. MALP cells express a gene called Adipoq, which is also expressed by subcutaneous fat cells. When cells expressing Adipoq were selectively removed from mice, the sinusoidal vessels were severely disrupted. Moreover, loss of these cells caused a massive increase in bone trabeculae (thin rods and plates of bone tissue) throughout marrow space.
However, it has recently been shown that factors called adipokines, including adiponectin and leptin, which are produced by subcutaneous fat cells, negatively regulate bone formation (Zou et al., 2019). This means that the changes observed in the bone marrow when cells expressing Adipoq are removed could simply be due to the disappearance of subcutaneous fat cells. To test whether this was the case, Zhong et al. transplanted subcutaneous fat into mice and then removed the host cells that expressed Adipoq. The mice now had subcutaneous fat cells, but no MALP cells, and still exhibited disrupted sinusoidal vessels and excess trabeculae. This result demonstrates that the changes observed in the bone marrow upon the removal of cells expressing Adipoq are specifically caused by MALP cell removal. These findings suggest that MALP cells are locally important components of the bone marrow environment, particularly in regulating marrow vasculature and bone formation, perhaps by secreting cytokines (Figure 1).
Together with a recent study that demonstrates the importance of pre-adipocyte-like cells in bone regeneration (Matsushita et al., 2020), these findings establish the concept that marrow adipocyte precursors (including MALP cells) play active roles in bone physiology and regeneration. The precise nature of MALP cells still requires further definition. For instance, many types of adipocyte-related cells have been described to date in the bone marrow. Do these cells represent separate or overlapping entities? Do they occupy different locations in bone marrow? If so, does that mean they have different roles? Another important question is whether there is any special feature that determines the identity of marrow adipocytes. How are they different from adipocytes in other areas of the body, and how do they differ metabolically? It is intriguing to think that the adipocyte precursor identity may confer cells with some metabolic advantages to secrete large amounts of cytokines.
References
-
A subset of chondrogenic cells provides early mesenchymal progenitors in growing bonesNature Cell Biology 16:1157–1167.https://doi.org/10.1038/ncb3067
-
Congenital lipodystrophy induces severe osteosclerosisPLOS Genetics 15:e1008244.https://doi.org/10.1371/journal.pgen.1008244
Article and author information
Author details
Publication history
Copyright
© 2020, Ono
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,327
- views
-
- 157
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.
-
- Cell Biology
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.