Sex-specific effects of cooperative breeding and colonial nesting on prosociality in corvids
Abstract
The investigation of prosocial behavior is of particular interest from an evolutionary perspective. Comparisons of prosociality across non-human animal species have, however, so far largely focused on primates, and their interpretation is hampered by the diversity of paradigms and procedures used. Here we present the first systematic comparison of prosocial behavior across multiple species in a taxonomic group outside the primate order, namely the bird family Corvidae. We measured prosociality in 8 corvid species, which vary in the expression of cooperative breeding and colonial nesting. We show that cooperative breeding is positively associated with prosocial behavior across species. Also, colonial nesting is associated with a stronger propensity for prosocial behavior, but only in males. The combined results of our study strongly suggest that both cooperative breeding and colonial nesting, which may both rely on heightened social tolerance at the nest, are likely evolutionary pathways to prosocial behavior in corvids.
Data availability
The datasets analyzed in this study are available on Dryad.
-
Sex-specific effects of cooperative breeding and colonial nesting on prosociality in corvidsDryad Digital Repository, doi:10.5061/dryad.s7h44j14d.
Article and author information
Author details
Funding
Austrian Science Fund (P26806)
- Jorg JM Massen
JST CREST (JPMJCR17A4)
- Ei-Ichi Izawa
Keio University ICR Projects (MKJ1905)
- Ei-Ichi Izawa
Royal Society of New Zealand (Rutherford Discovery Fellowship)
- Alex H Taylor
Prime Minister's McDiarmid Emerging Scientist Prize
- Alex H Taylor
University of Vienna (Marie Jahoda grant)
- Lisa Horn
Austrian Science Fund (Y366-B17)
- Thomas Bugnyar
Vienna Science and Technology Fund (CS11-008)
- Thomas Bugnyar
ERA-Net BiodivERsA (31BD30_172465)
- Michael Griesser
University of Vienna (Förderungsstipendium)
- Marietta Hengl
- Christiane Rössler
University of Vienna (Uni:Docs doctoral fellowship)
- Lisa-Claire Vanhooland
JSPS KAKENHI (17H02653)
- Ei-Ichi Izawa
JSPS KAKENHI (16H06324)
- Ei-Ichi Izawa
JSPS KAKENHI (15J02148)
- Masaki Suyama
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The study followed the Guidelines for the Use of Animals (81), in accordance with national legislations. All animal care and data collection protocols were reviewed and approved by the ethical boards of the respective research institutions (see SI, Table S7).
Copyright
© 2020, Horn et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,732
- views
-
- 305
- downloads
-
- 25
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Evolutionary Biology
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.
-
- Ecology
Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.