1. Structural Biology and Molecular Biophysics
Download icon

Tracking the movement of discrete gating charges in a voltage-gated potassium channel

  1. Michael F Priest
  2. Elizabeth EL Lee
  3. Francisco Bezanilla  Is a corresponding author
  1. University of Chicago, United States
Research Article
  • Cited 0
  • Views 402
  • Annotations
Cite this article as: eLife 2021;10:e58148 doi: 10.7554/eLife.58148


Positively-charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1, R2) in the Shaker potassium channel voltage sensor using a fluorescent positively-charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole-Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage sensitive phosphatase (CiVSP) (Murata et al., 2005a).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Actual records have been provided for Figures 2,3,4,5,7,8

Article and author information

Author details

  1. Michael F Priest

    Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth EL Lee

    Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Francisco Bezanilla

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6663-7931


National Institutes of Health (R01-GM030376)

  • Francisco Bezanilla

National Institutes of Health (F31NS081954)

  • Michael F Priest

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Chicago. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Chicago (Permit Number: 71475).

Reviewing Editor

  1. Richard W Aldrich, The University of Texas at Austin, United States

Publication history

  1. Received: April 22, 2020
  2. Preprint posted: April 24, 2020 (view preprint)
  3. Accepted: November 8, 2021
  4. Accepted Manuscript published: November 15, 2021 (version 1)
  5. Version of Record published: December 1, 2021 (version 2)


© 2021, Priest et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 402
    Page views
  • 111
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Stefan T Huber et al.
    Research Article

    Cryogenic electron microscopy has become an essential tool for structure determination of biological macromolecules. In practice, the difficulty to reliably prepare samples with uniform ice thickness still represents a barrier for routine high-resolution imaging and limits the current throughput of the technique. We show that a nanofluidic sample support with well-defined geometry can be used to prepare cryo-EM specimens with reproducible ice thickness from picoliter sample volumes. The sample solution is contained in electron-transparent nanochannels that provide uniform thickness gradients without further optimisation and eliminate the potentially destructive air-water interface. We demonstrate the possibility to perform high-resolution structure determination with three standard protein specimens. Nanofabricated sample supports bear potential to automate the cryo-EM workflow, and to explore new frontiers for cryo-EM applications such as time-resolved imaging and high-throughput screening.

    1. Physics of Living Systems
    2. Structural Biology and Molecular Biophysics
    Rui Fang et al.
    Research Article

    The ring-like ATPase complexes in the AAA+ family perform diverse cellular functions that require coordination between the conformational transitions of their individual ATPase subunits1,2. How the energy from ATP hydrolysis is captured to perform mechanical work by these coordinated movements is unknown. In this study, we developed a novel approach for delineating the nucleotide-dependent free-energy landscape (FEL) of the proteasome's heterohexameric ATPase complex based on complementary structural and kinetic measurements. We used the FEL to simulate the dynamics of the proteasome and quantitatively evaluated the predicted structural and kinetic properties. The FEL model predictions are consistent with a wide range of experimental observations in this and previous studies and suggested novel mechanistic features of the proteasomal ATPases. We find that the cooperative movements of the ATPase subunits result from the design of the ATPase hexamer entailing a unique free-energy minimum for each nucleotide-binding status. ATP hydrolysis dictates the direction of substrate translocation by triggering an energy-dissipating conformational transition of the ATPase complex.