The role of extracellular matrix phosphorylation on energy dissipation in bone

  1. Stacyann Bailey  Is a corresponding author
  2. Grazyna E Sroga
  3. Betty Hoac
  4. Orestis L Katsamenis
  5. Zehai Wang
  6. Nikolaos Bouropoulos
  7. Marc D McKee
  8. Esben S Sorenson
  9. Philipp J Thurner
  10. Deepak Vashishth  Is a corresponding author
  1. Rensselaer Polytechnic Institute, United States
  2. McGill University, Canada
  3. University of Southampton, United Kingdom
  4. University of Patras, Greece
  5. Aarhus University, Denmark
  6. Vienna University of Technology, Austria

Abstract

Protein phosphorylation, critical for cellular regulatory mechanisms, is implicated in various diseases. However, it remains unknown whether heterogeneity in phosphorylation of key structural proteins alters tissue integrity and organ function. Here, osteopontin phosphorylation level declined in hypo- and hyper- phosphatemia mouse models exhibiting skeletal deformities. Phosphorylation increased cohesion between osteopontin polymers, and adhesion of osteopontin to hydroxyapatite, enhancing energy dissipation. Fracture toughness, a measure of bone's mechanical competence, increased with ex-vivo phosphorylation of wildtype mouse bones and declined with ex-vivo dephosphorylation. In osteopontin deficient mice, global matrix phosphorylation level was not associated with toughness. Our findings suggest that phosphorylated osteopontin promotes fracture toughness in a dose-dependent manner through increased interfacial bond formation. In the absence of osteopontin, phosphorylation increases electrostatic repulsion, protein alignment, and interfilament distance leading to decreased fracture resistance. These mechanisms may be of importance in other connective tissues, and the key to unraveling cell-matrix interactions in diseases.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Stacyann Bailey

    Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, United States
    For correspondence
    stacyann.bailey@mountsinai.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9013-2469
  2. Grazyna E Sroga

    Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    No competing interests declared.
  3. Betty Hoac

    Faculty of Dentistry, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  4. Orestis L Katsamenis

    Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
    Competing interests
    No competing interests declared.
  5. Zehai Wang

    Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    No competing interests declared.
  6. Nikolaos Bouropoulos

    Department of Material Science, University of Patras, Patras, Greece
    Competing interests
    No competing interests declared.
  7. Marc D McKee

    Faculty of Dentistry, Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Canada
    Competing interests
    Marc D McKee, MDM is a member of the FRQS Network for Oral and Bone Health Research, and he holds the Canada Research Chair in Biomineralization as part of the Canada Research Chairs program which contributed to the funding of this work..
  8. Esben S Sorenson

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7050-3354
  9. Philipp J Thurner

    Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
    Competing interests
    No competing interests declared.
  10. Deepak Vashishth

    Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, United States
    For correspondence
    vashid@rpi.edu
    Competing interests
    No competing interests declared.

Funding

National Institutes of Health (AR 49635)

  • Stacyann Bailey
  • Grazyna E Sroga
  • Zehai Wang
  • Deepak Vashishth

Canadian Institutes of Health Research

  • Betty Hoac
  • Marc D McKee

University of Southampton (Doctoral Prize Fellowship)

  • Orestis L Katsamenis

Canada Research Chairs

  • Marc D McKee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (VAS-001-14) of Rensselaer Polytechnic Institute.

Copyright

© 2020, Bailey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,410
    views
  • 165
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stacyann Bailey
  2. Grazyna E Sroga
  3. Betty Hoac
  4. Orestis L Katsamenis
  5. Zehai Wang
  6. Nikolaos Bouropoulos
  7. Marc D McKee
  8. Esben S Sorenson
  9. Philipp J Thurner
  10. Deepak Vashishth
(2020)
The role of extracellular matrix phosphorylation on energy dissipation in bone
eLife 9:e58184.
https://doi.org/10.7554/eLife.58184

Share this article

https://doi.org/10.7554/eLife.58184

Further reading

    1. Medicine
    Teruhiko Yoshida, Khun Zaw Latt ... Jeffrey B Kopp
    Research Article

    HIV disease remains prevalent in the USA and chronic kidney disease remains a major cause of morbidity in HIV-1-positive patients. Host double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a sensor for viral dsRNA, including HIV-1. We show that PKR inhibition by compound C16 ameliorates the HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model, with reversal of mitochondrial dysfunction. Combined analysis of single-nucleus RNA-seq and bulk RNA-seq data revealed that oxidative phosphorylation was one of the most downregulated pathways and identified signal transducer and activator of transcription (STAT3) as a potential mediating factor. We identified in Tg26 mice a novel proximal tubular cell cluster enriched in mitochondrial transcripts. Podocytes showed high levels of HIV-1 gene expression and dysregulation of cytoskeleton-related genes, and these cells dedifferentiated. In injured proximal tubules, cell-cell interaction analysis indicated activation of the pro-fibrogenic PKR-STAT3-platelet-derived growth factor (PDGF)-D pathway. These findings suggest that PKR inhibition and mitochondrial rescue are potential novel therapeutic approaches for HIVAN.

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.