An essential role for MEF2C in the cortical response to loss of sleep in mice

  1. Theresa E Bjorness
  2. Ashwinikumar Kulkarni
  3. Volodymyr Rybalchenko
  4. Ayako Suzuki
  5. Catherine Bridges
  6. Adam J Harrington
  7. Christopher W Cowan
  8. Joseph S Takahashi
  9. Genevieve Konopka  Is a corresponding author
  10. Robert W Greene  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States
  2. University of Texas Southwestern Medical Center, United States
  3. Medical University of South Carolina, United States
  4. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Abstract

Neuronal activity and gene expression in response to the loss of sleep can provide a window into the enigma of sleep function. Sleep loss is associated with brain differential gene expression, an increase in pyramidal cell mEPSC frequency and amplitude, and a characteristic rebound and resolution of slow wave sleep-slow wave activity (SWS-SWA). However, the molecular mechanism(s) mediating the sleep loss response are not well understood. We show that sleep-loss regulates MEF2C phosphorylation, a key mechanism regulating MEF2C transcriptional activity, and that MEF2C function in postnatal excitatory forebrain neurons is required for the biological events in response to sleep loss in C57BL/6J mice. These include altered gene expression, the increase and recovery of synaptic strength, and the rebound and resolution of SWS-SWA, which implicate MEF2C as an essential regulator of sleep function.

Data availability

The NCBI Gene Expression Omnibus (GEO) accession number for the RNA-seq data reported in this paper is GSE 144957

The following data sets were generated

Article and author information

Author details

  1. Theresa E Bjorness

    Department of Psychiatry & Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Ashwinikumar Kulkarni

    Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0951-2427
  3. Volodymyr Rybalchenko

    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Ayako Suzuki

    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Catherine Bridges

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    Competing interests
    No competing interests declared.
  6. Adam J Harrington

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    Competing interests
    No competing interests declared.
  7. Christopher W Cowan

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5472-3296
  8. Joseph S Takahashi

    Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0384-8878
  9. Genevieve Konopka

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    genevieve.konopka@utsouthwestern.edu
    Competing interests
    Genevieve Konopka, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3363-7302
  10. Robert W Greene

    Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    robertw.greene@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1355-9797

Funding

National Institute of Neurological Disorders and Stroke (NS103422)

  • Robert W Greene

International Institute for Integrative Sleep Medicine

  • Robert W Greene

National Institute of Mental Health (MH102603)

  • Robert W Greene

National Institute on Deafness and Other Communication Disorders (DC014702)

  • Genevieve Konopka

James S. McDonnell Foundation (220020467)

  • Genevieve Konopka

National Institute on Aging (AG045795)

  • Joseph S Takahashi

National Institute of Neurological Disorders and Stroke (NS106657)

  • Joseph S Takahashi

Howard Hughes Medical Institute

  • Joseph S Takahashi

National Institute of Mental Health (MH111464)

  • Christopher W Cowan

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD098893)

  • Catherine Bridges

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#102096) of the UT Southwestern Medical Center. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Publication history

  1. Received: April 27, 2020
  2. Accepted: August 26, 2020
  3. Accepted Manuscript published: August 27, 2020 (version 1)
  4. Version of Record published: September 14, 2020 (version 2)

Copyright

© 2020, Bjorness et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,387
    Page views
  • 310
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theresa E Bjorness
  2. Ashwinikumar Kulkarni
  3. Volodymyr Rybalchenko
  4. Ayako Suzuki
  5. Catherine Bridges
  6. Adam J Harrington
  7. Christopher W Cowan
  8. Joseph S Takahashi
  9. Genevieve Konopka
  10. Robert W Greene
(2020)
An essential role for MEF2C in the cortical response to loss of sleep in mice
eLife 9:e58331.
https://doi.org/10.7554/eLife.58331

Further reading

    1. Neuroscience
    Flavia Venetucci Gouveia, Jurgen Germann ... Clement Hamani
    Research Article Updated

    Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas – together with patient age – were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Bradley M Colquitt, Kelly Li ... Michael S Brainard
    Research Article

    Sensory feedback is required for the stable execution of learned motor skills, and its loss can severely disrupt motor performance. The neural mechanisms that mediate sensorimotor stability have been extensively studied at systems and physiological levels, yet relatively little is known about how disruptions to sensory input alter the molecular properties of associated motor systems. Songbird courtship song, a model for skilled behavior, is a learned and highly structured vocalization that is destabilized following deafening. Here, we sought to determine how the loss of auditory feedback modifies gene expression and its coordination across the birdsong sensorimotor circuit. To facilitate this system-wide analysis of transcriptional responses, we developed a gene expression profiling approach that enables the construction of hundreds of spatially-defined RNA-sequencing libraries. Using this method, we found that deafening preferentially alters gene expression across birdsong neural circuitry relative to surrounding areas, particularly in premotor and striatal regions. Genes with altered expression are associated with synaptic transmission, neuronal spines, and neuromodulation and show a bias toward expression in glutamatergic neurons and Pvalb/Sst-class GABAergic interneurons. We also found that connected song regions exhibit correlations in gene expression that were reduced in deafened birds relative to hearing birds, suggesting that song destabilization alters the inter-region coordination of transcriptional states. Finally, lesioning LMAN, a forebrain afferent of RA required for deafening-induced song plasticity, had the largest effect on groups of genes that were also most affected by deafening. Combined, this integrated transcriptomics analysis demonstrates that the loss of peripheral sensory input drives a distributed gene expression response throughout associated sensorimotor neural circuitry and identifies specific candidate molecular and cellular mechanisms that support the stability and plasticity of learned motor skills.