Abstract

Climate regions form the basis of many ecological, evolutionary and conservation studies. However, our understanding of climate regions is limited to how they shape vegetation: They do not account for the distribution of animals. Here we develop a network-based framework to identify important climates worldwide based on regularities in realized niches of about 26,000 tetrapods. We show that high-energy climates, including deserts, tropical savannas, and steppes, are consistent across animal- and plant-derived classifications, indicating similar underlying climatic determinants. Conversely, temperate climates differ across all groups, suggesting that these climates allow for idiosyncratic adaptations. Finally, we show how the integration of niche classifications with geographical information enables the detection of climatic transition zones and the signal of geographic and historical processes. Our results identify the climates shaping the distribution of tetrapods and call for caution when using general climate classifications to study the ecology, evolution, or conservation of specific taxa.

Data availability

Data used is freely available in the sources detailed in the Methods section. Data generated in this study is provided as source data associated to Figures 2 and 3.

The following previously published data sets were used

Article and author information

Author details

  1. Joaquín Calatayud

    Integrated Science Lab, Umeå University, Umeå, Sweden
    For correspondence
    j.calatayud.ortega@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9056-4149
  2. Magnus Neuman

    Integrated Science Lab, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexis Rojas

    Integrated Science Lab, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Anton Eriksson

    Integrated Science Lab, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Martin Rosvall

    Integrated Science Lab, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.

Funding

Carl Tryggers Stiftelse för Vetenskaplig Forskning

  • Joaquín Calatayud

Stiftelsen Olle Engkvist Byggmästare

  • Martin Rosvall

Svenska Forskningsrådet Formas

  • Magnus Neuman
  • Martin Rosvall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Calatayud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,608
    views
  • 246
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joaquín Calatayud
  2. Magnus Neuman
  3. Alexis Rojas
  4. Anton Eriksson
  5. Martin Rosvall
(2021)
Regularities in species' niches reveal the world's climate regions
eLife 10:e58397.
https://doi.org/10.7554/eLife.58397

Share this article

https://doi.org/10.7554/eLife.58397