A Permian fish reveals widespread distribution of neopterygian-like jaw suspension

  1. Thodoris Argyriou  Is a corresponding author
  2. Sam Giles
  3. Matt Friedman
  1. Muséum National d'Histoire Naturelle, France
  2. University of Birmingham, United Kingdom
  3. University of Michigan-Ann Arbor, United States

Abstract

The actinopterygian crown group (comprising all living ray-finned fishes) originated by the end of the Carboniferous. However, most late Paleozoic taxa are stem actinopterygians, and broadly resemble stratigraphically older taxa. The early Permian †Brachydegma caelatum is notable for its three-dimensional preservation and past phylogenetic interpretations as a nested member of the neopterygian crown. Here, we use computed microtomography to redescribe †Brachydegma, uncovering an unanticipated combination of primitive (e.g., aortic canal; immobile maxilla) and derived (e.g., differentiated occipital ossifications; posterior stem of parasphenoid; two accessory hyoidean ossifications; double jaw joint) dermal and endoskeletal features relative to most other Paleozoic actinopterygians. Some of these features were previously thought to be restricted to the neopterygian crown. The precise phylogenetic position of †Brachydegma is unclear, with placements either on the polypterid stem, or as an early-diverging stem neopterygian. However, our analyses decisively reject previous placements of †Brachydegma in the neopterygian crown. Critically, we demonstrate that key-endoskeletal components of the hyoid portion of the suspensorium of crown neopterygians appeared deeper in the tree than previously thought.

Data availability

μCT raw and/or derived data are available on Morphosource. Links to parent directories for each studied specimen are given below.†Brachydegma caelatum (MCZ VPF 6503): www.morphosource.org/concern/media/000440974†Brachydegma caelatum (MCZ VPF 6504): www.morphosource.org/concern/media/000441020†Pteronisculus gunnari (NHMD VP 73588A): www.morphosource.org/concern/media/000441157†Parasemionotidae indet. (NHMD VP 74424A): www.morphosource.org/concern/media/000441197Acipenser brevirostrum (UMMZ 64250): www.morphosource.org/concern/media/000441184Phylogenetic matrix and trees available through Dryad at: doi.org/10.5061/dryad.jsxksn0bz

The following data sets were generated

Article and author information

Author details

  1. Thodoris Argyriou

    Muséum National d'Histoire Naturelle, Paris, France
    For correspondence
    t.argyriou@lrz.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2036-5088
  2. Sam Giles

    School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Matt Friedman

    Museum of Paleontology, Department of Earth and Environmental Sciences, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0114-7384

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P1ZHP3_168253)

  • Thodoris Argyriou

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P2ZHP3_184216)

  • Thodoris Argyriou

Alexander von Humboldt-Stiftung

  • Thodoris Argyriou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Argyriou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,065
    views
  • 336
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thodoris Argyriou
  2. Sam Giles
  3. Matt Friedman
(2022)
A Permian fish reveals widespread distribution of neopterygian-like jaw suspension
eLife 11:e58433.
https://doi.org/10.7554/eLife.58433

Share this article

https://doi.org/10.7554/eLife.58433

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.