1. Immunology and Inflammation
Download icon

Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo

  1. Ricardo A Fernandes
  2. Chaoran Li
  3. Gang Wang
  4. Xinbo Yang
  5. Christina S Savvides
  6. Caleb R Glassman
  7. Shen Dong
  8. Eric Luxenberg
  9. Leah V Sibener
  10. Michael E Birnbaum
  11. Christophe Benoist
  12. Diane Mathis  Is a corresponding author
  13. K Christopher Garcia  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Harvard Medical School, United States
  3. Stanford University School of Engineering, United States
  4. Howard Hughes Medical Institute, Stanford University School of Medicine, United States
Research Article
  • Cited 7
  • Views 1,730
  • Annotations
Cite this article as: eLife 2020;9:e58463 doi: 10.7554/eLife.58463

Abstract

T regulatory (Treg) cells play vital roles in modulating immunity and tissue homeostasis. Their actions depend on TCR recognition of peptide-MHC molecules; yet the degree of peptide specificity of Treg-cell function, and whether Treg ligands can be used to manipulate Treg cell biology are unknown. Here, we developed an Ab-peptide library that enabled unbiased screening of peptides recognized by a bona fide murine Treg cell clone isolated from the visceral adipose tissue (VAT), and identified surrogate agonist peptides, with differing affinities and signaling potencies. The VAT-Treg cells expanded in vivo by one of the surrogate agonists preserved the typical VAT-Treg transcriptional programs. Immunization with this surrogate, especially when coupled with blockade of TNFa signaling, expanded VAT-Treg cells, resulting in protection from inflammation and improved metabolic indices, including promotion of insulin sensitivity. These studies suggest that antigen-specific targeting of VAT-localized Treg cells could eventually be a strategy for improving metabolic disease.

Data availability

Sequencing data for the peptide-Ab yeast library screening and RNA-seq data for VAT-Treg cells have been deposited in GEO under accession codes GSE151070 and GSE150173. Custom Perl scripts for the processing of the deep sequencing data for the peptide-Ab is available from: https://github.com/jlmendozabio/NGSpeptideprepandpred.

The following data sets were generated

Article and author information

Author details

  1. Ricardo A Fernandes

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chaoran Li

    Department of Immunology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gang Wang

    Department of Immunology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinbo Yang

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina S Savvides

    Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caleb R Glassman

    Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shen Dong

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Luxenberg

    Department of Electrical Engineering, Stanford University School of Engineering, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Leah V Sibener

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael E Birnbaum

    Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christophe Benoist

    Department of Immunology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Diane Mathis

    Department of Immunology, Harvard Medical School, Boston, United States
    For correspondence
    diane_mathis@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. K Christopher Garcia

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    For correspondence
    kcgarcia@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9273-0278

Funding

Wellcome (WT101609MA)

  • Ricardo A Fernandes

NIH Office of the Director (5R01AI103867)

  • K Christopher Garcia

Howard Hughes Medical Institute (HHMI)

  • K Christopher Garcia

G Harold and Leila Y. Mathers Foundation

  • K Christopher Garcia

NIH Clinical Center (2R01 DK092541)

  • Diane Mathis

JPB Foundation

  • Diane Mathis

NIH Office of the Director (UC4DK116264)

  • K Christopher Garcia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and every effort was made to minimize suffering. All experiments were performed following animal protocols approved by the HMS Institutional Animal Use and Care Committee (protocol IS00001257).

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Publication history

  1. Received: April 30, 2020
  2. Accepted: August 4, 2020
  3. Accepted Manuscript published: August 10, 2020 (version 1)
  4. Accepted Manuscript updated: August 17, 2020 (version 2)
  5. Version of Record published: August 20, 2020 (version 3)

Copyright

© 2020, Fernandes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,730
    Page views
  • 322
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Sabela Rodríguez-Lorenzo et al.
    Research Article

    Multiple sclerosis (MS) is a chronic demyelinating disease characterised by immune cell infiltration resulting in lesions that preferentially affect periventricular areas of the brain. Despite research efforts to define the role of various immune cells in MS pathogenesis, the focus has been on a few immune cell populations while full-spectrum analysis, encompassing others such as natural killer (NK) cells, has not been performed. Here, we used single-cell mass cytometry (CyTOF) to profile the immune landscape of brain periventricular areas - septum and choroid plexus – and of the circulation from donors with MS, dementia and controls without neurological disease. Using a 37-marker panel, we revealed the infiltration of T cells and antibody-secreting cells in periventricular brain regions and identified a novel NK cell signature specific to MS. CD56bright NK cells were accumulated in the septum of MS donors and displayed an activated and migratory phenotype, similar to that of CD56bright NK cells in the circulation. We validated this signature by multiplex immunohistochemistry and found that the number of NK cells with high expression of granzyme K, typical of the CD56bright subset, was increased in both periventricular lesions and the choroid plexus of donors with MS. Together, our multi-tissue single-cell data shows that CD56bright NK cells accumulate in the periventricular brain regions of MS patients, bringing NK cells back to the spotlight of MS pathology.

    1. Immunology and Inflammation
    2. Stem Cells and Regenerative Medicine
    Boyang Ren et al.
    Research Article

    Thymic homing of hematopoietic progenitor cells (HPCs) is tightly regulated for proper T cell development. Previously we have identified a subset of specialized thymic portal endothelial cells (TPECs), which is important for thymic HPC homing. However, the underlying molecular mechanism still remains unknown. Here, we found that signal regulatory protein alpha (SIRPα) is preferentially expressed on TPECs. Disruption of CD47-SIRPα signaling in mice resulted in reduced number of thymic early T cell progenitors (ETPs), impaired thymic HPC homing, and altered early development of thymocytes. Mechanistically, Sirpa-deficient ECs and Cd47-deficient bone marrow progenitor cells or T lymphocytes demonstrated impaired transendothelial migration (TEM). Specifically, SIRPα intracellular ITIM motif-initiated downstream signaling in ECs was found to be required for TEM in an SHP2- and Src-dependent manner. Furthermore, CD47 signaling from migrating cells and SIRPα intracellular signaling were found to be required for VE-cadherin endocytosis in ECs. Thus, our study reveals a novel role of endothelial SIRPα signaling for thymic HPC homing for T cell development.