Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo

  1. Ricardo A Fernandes
  2. Chaoran Li
  3. Gang Wang
  4. Xinbo Yang
  5. Christina S Savvides
  6. Caleb R Glassman
  7. Shen Dong
  8. Eric Luxenberg
  9. Leah V Sibener
  10. Michael E Birnbaum
  11. Christophe Benoist
  12. Diane Mathis  Is a corresponding author
  13. K Christopher Garcia  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Harvard Medical School, United States
  3. Stanford University School of Engineering, United States
  4. Howard Hughes Medical Institute, Stanford University School of Medicine, United States

Abstract

T regulatory (Treg) cells play vital roles in modulating immunity and tissue homeostasis. Their actions depend on TCR recognition of peptide-MHC molecules; yet the degree of peptide specificity of Treg-cell function, and whether Treg ligands can be used to manipulate Treg cell biology are unknown. Here, we developed an Ab-peptide library that enabled unbiased screening of peptides recognized by a bona fide murine Treg cell clone isolated from the visceral adipose tissue (VAT), and identified surrogate agonist peptides, with differing affinities and signaling potencies. The VAT-Treg cells expanded in vivo by one of the surrogate agonists preserved the typical VAT-Treg transcriptional programs. Immunization with this surrogate, especially when coupled with blockade of TNFa signaling, expanded VAT-Treg cells, resulting in protection from inflammation and improved metabolic indices, including promotion of insulin sensitivity. These studies suggest that antigen-specific targeting of VAT-localized Treg cells could eventually be a strategy for improving metabolic disease.

Data availability

Sequencing data for the peptide-Ab yeast library screening and RNA-seq data for VAT-Treg cells have been deposited in GEO under accession codes GSE151070 and GSE150173. Custom Perl scripts for the processing of the deep sequencing data for the peptide-Ab is available from: https://github.com/jlmendozabio/NGSpeptideprepandpred.

The following data sets were generated

Article and author information

Author details

  1. Ricardo A Fernandes

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chaoran Li

    Department of Immunology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gang Wang

    Department of Immunology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinbo Yang

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina S Savvides

    Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caleb R Glassman

    Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shen Dong

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Luxenberg

    Department of Electrical Engineering, Stanford University School of Engineering, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Leah V Sibener

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael E Birnbaum

    Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christophe Benoist

    Department of Immunology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Diane Mathis

    Department of Immunology, Harvard Medical School, Boston, United States
    For correspondence
    diane_mathis@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. K Christopher Garcia

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    For correspondence
    kcgarcia@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9273-0278

Funding

Wellcome (WT101609MA)

  • Ricardo A Fernandes

NIH Office of the Director (5R01AI103867)

  • K Christopher Garcia

Howard Hughes Medical Institute (HHMI)

  • K Christopher Garcia

G Harold and Leila Y. Mathers Foundation

  • K Christopher Garcia

NIH Clinical Center (2R01 DK092541)

  • Diane Mathis

JPB Foundation

  • Diane Mathis

NIH Office of the Director (UC4DK116264)

  • K Christopher Garcia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and every effort was made to minimize suffering. All experiments were performed following animal protocols approved by the HMS Institutional Animal Use and Care Committee (protocol IS00001257).

Version history

  1. Received: April 30, 2020
  2. Accepted: August 4, 2020
  3. Accepted Manuscript published: August 10, 2020 (version 1)
  4. Accepted Manuscript updated: August 17, 2020 (version 2)
  5. Version of Record published: August 20, 2020 (version 3)

Copyright

© 2020, Fernandes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,358
    views
  • 406
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ricardo A Fernandes
  2. Chaoran Li
  3. Gang Wang
  4. Xinbo Yang
  5. Christina S Savvides
  6. Caleb R Glassman
  7. Shen Dong
  8. Eric Luxenberg
  9. Leah V Sibener
  10. Michael E Birnbaum
  11. Christophe Benoist
  12. Diane Mathis
  13. K Christopher Garcia
(2020)
Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo
eLife 9:e58463.
https://doi.org/10.7554/eLife.58463

Share this article

https://doi.org/10.7554/eLife.58463

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.