Abstract

For many organisms, searching for relevant targets such as food or mates entails active, strategic sampling of the environment. Finding odorous targets may be the most ancient search problem that motile organisms evolved to solve. While chemosensory navigation has been well characterized in micro-organisms and invertebrates, spatial olfaction in vertebrates is poorly understood. We have established an olfactory search assay in which freely-moving mice navigate noisy concentration gradients of airborne odor. Mice solve this task using concentration gradient cues and do not require stereo olfaction for performance. During task performance, respiration and nose movement are synchronized with tens of milliseconds precision. This synchrony is present during trials and largely absent during inter-trial intervals, suggesting that sniff-synchronized nose movement is a strategic behavioral state rather than simply a constant accompaniment to fast breathing. To reveal the spatiotemporal structure of these active sensing movements, we used machine learning methods to parse motion trajectories into elementary movement motifs. Motifs fall into two clusters, which correspond to investigation and approach states. Investigation motifs lock precisely to sniffing, such that the individual motifs preferentially occur at specific phases of the sniff cycle. The allocentric structure of investigation and approach indicate an advantage to sampling both sides of the sharpest part of the odor gradient, consistent with a serial sniff strategy for gradient sensing. This work clarifies sensorimotor strategies for mouse olfactory search and guides ongoing work into the underlying neural mechanisms.

Data availability

Source code is available on github at https://github.com/Smear-Lab/Olfactory_Search, and source data files are uploaded to Dryad.

The following data sets were generated

Article and author information

Author details

  1. Teresa M Findley

    Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. David G Wyrick

    Institute of Neuroscience; Department of Biology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8096-5766
  3. Jennifer L Cramer

    Institute of Neuroscience; Department of Biology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Morgan A Brown

    Institute of Neuroscience, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Blake Holcomb

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robin Attey

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9652-8103
  7. Dorian Yeh

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Monasevitch

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nelly Nouboussi

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Isabelle Cullen

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jeremea O Songco

    Institute of Neuroscience; Department of Biology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jared F King

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yashar Ahmadian

    Institute of Neuroscience; Department of Mathematics, University of Oregon, Eugene, OR, United States
    For correspondence
    ya311@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5942-0697
  14. Matthew C Smear

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    For correspondence
    smear@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4689-388X

Funding

Whitehall Foundation (2015-12-201)

  • Matthew C Smear

National Institute on Deafness and Other Communication Disorders (R56DC015584)

  • Matthew C Smear

National Institute of Neurological Disorders and Stroke (R21NS104935)

  • Matthew C Smear

National Institute of Neurological Disorders and Stroke (R34NS116731)

  • Matthew C Smear

National Institute on Deafness and Other Communication Disorders (F31DC016799)

  • Teresa M Findley

National Institute of Neurological Disorders and Stroke (F32MH118724)

  • Morgan A Brown

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: his study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-17-23) of the University of Oregon. All surgery was performed under sodium isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2021, Findley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,800
    views
  • 457
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Teresa M Findley
  2. David G Wyrick
  3. Jennifer L Cramer
  4. Morgan A Brown
  5. Blake Holcomb
  6. Robin Attey
  7. Dorian Yeh
  8. Eric Monasevitch
  9. Nelly Nouboussi
  10. Isabelle Cullen
  11. Jeremea O Songco
  12. Jared F King
  13. Yashar Ahmadian
  14. Matthew C Smear
(2021)
Sniff-synchronized, gradient-guided olfactory search by freely-moving mice
eLife 10:e58523.
https://doi.org/10.7554/eLife.58523

Share this article

https://doi.org/10.7554/eLife.58523

Further reading

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.