Abstract

For many organisms, searching for relevant targets such as food or mates entails active, strategic sampling of the environment. Finding odorous targets may be the most ancient search problem that motile organisms evolved to solve. While chemosensory navigation has been well characterized in micro-organisms and invertebrates, spatial olfaction in vertebrates is poorly understood. We have established an olfactory search assay in which freely-moving mice navigate noisy concentration gradients of airborne odor. Mice solve this task using concentration gradient cues and do not require stereo olfaction for performance. During task performance, respiration and nose movement are synchronized with tens of milliseconds precision. This synchrony is present during trials and largely absent during inter-trial intervals, suggesting that sniff-synchronized nose movement is a strategic behavioral state rather than simply a constant accompaniment to fast breathing. To reveal the spatiotemporal structure of these active sensing movements, we used machine learning methods to parse motion trajectories into elementary movement motifs. Motifs fall into two clusters, which correspond to investigation and approach states. Investigation motifs lock precisely to sniffing, such that the individual motifs preferentially occur at specific phases of the sniff cycle. The allocentric structure of investigation and approach indicate an advantage to sampling both sides of the sharpest part of the odor gradient, consistent with a serial sniff strategy for gradient sensing. This work clarifies sensorimotor strategies for mouse olfactory search and guides ongoing work into the underlying neural mechanisms.

Data availability

Source code is available on github at https://github.com/Smear-Lab/Olfactory_Search, and source data files are uploaded to Dryad.

The following data sets were generated

Article and author information

Author details

  1. Teresa M Findley

    Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. David G Wyrick

    Institute of Neuroscience; Department of Biology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8096-5766
  3. Jennifer L Cramer

    Institute of Neuroscience; Department of Biology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Morgan A Brown

    Institute of Neuroscience, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Blake Holcomb

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robin Attey

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9652-8103
  7. Dorian Yeh

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Monasevitch

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nelly Nouboussi

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Isabelle Cullen

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jeremea O Songco

    Institute of Neuroscience; Department of Biology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jared F King

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yashar Ahmadian

    Institute of Neuroscience; Department of Mathematics, University of Oregon, Eugene, OR, United States
    For correspondence
    ya311@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5942-0697
  14. Matthew C Smear

    Institute of Neuroscience; Department of Psychology, University of Oregon, Eugene, OR, United States
    For correspondence
    smear@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4689-388X

Funding

Whitehall Foundation (2015-12-201)

  • Matthew C Smear

National Institute on Deafness and Other Communication Disorders (R56DC015584)

  • Matthew C Smear

National Institute of Neurological Disorders and Stroke (R21NS104935)

  • Matthew C Smear

National Institute of Neurological Disorders and Stroke (R34NS116731)

  • Matthew C Smear

National Institute on Deafness and Other Communication Disorders (F31DC016799)

  • Teresa M Findley

National Institute of Neurological Disorders and Stroke (F32MH118724)

  • Morgan A Brown

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Upinder Singh Bhalla, Tata Institute of Fundamental Research, India

Ethics

Animal experimentation: his study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AUP-17-23) of the University of Oregon. All surgery was performed under sodium isofluorane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: May 3, 2020
  2. Accepted: April 22, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Version of Record published: June 1, 2021 (version 2)

Copyright

© 2021, Findley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,278
    views
  • 413
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Teresa M Findley
  2. David G Wyrick
  3. Jennifer L Cramer
  4. Morgan A Brown
  5. Blake Holcomb
  6. Robin Attey
  7. Dorian Yeh
  8. Eric Monasevitch
  9. Nelly Nouboussi
  10. Isabelle Cullen
  11. Jeremea O Songco
  12. Jared F King
  13. Yashar Ahmadian
  14. Matthew C Smear
(2021)
Sniff-synchronized, gradient-guided olfactory search by freely-moving mice
eLife 10:e58523.
https://doi.org/10.7554/eLife.58523

Share this article

https://doi.org/10.7554/eLife.58523

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.