Heterogeneity of murine periosteum progenitors involved in fracture healing

  1. Brya G Matthews  Is a corresponding author
  2. Sanja Novak
  3. Francesca V Sbrana
  4. Jessica L Funnell
  5. Ye Cao
  6. Emma J Buckels
  7. Danka Grcevic
  8. Ivo Kalajzic
  1. University of Auckland, New Zealand
  2. University of Connecticut, United States
  3. University of Zagreb, Croatia

Abstract

The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched for progenitor cells, including Sca1+ cells, CFU-F and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that αSMA identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts, but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture, can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum, but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched for skeletal progenitor cells and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.

Data availability

RNAseq data have been deposited in GEO under accession GSE165846. Source data files are provided for all figures (1-8)

The following data sets were generated

Article and author information

Author details

  1. Brya G Matthews

    Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
    For correspondence
    brya.matthews@auckland.ac.nz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4145-4696
  2. Sanja Novak

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8042-932X
  3. Francesca V Sbrana

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica L Funnell

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ye Cao

    Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma J Buckels

    Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  7. Danka Grcevic

    Department of Physiology and Immunology, University of Zagreb, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  8. Ivo Kalajzic

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Connecticut Innovations (14-SCA-UCHC-02)

  • Brya G Matthews

Health Research Council of New Zealand (Sir Charles Hercus Fellowship)

  • Brya G Matthews

American Society for Bone and Mineral Research (Rising Star Award)

  • Brya G Matthews

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR055607)

  • Ivo Kalajzic

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR070813)

  • Ivo Kalajzic

Connecticut Innovations (16-RMB-UCHC-10)

  • Ivo Kalajzic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Subburaman Mohan, Loma Linda University, United States

Ethics

Animal experimentation: The majority of the study was performed at UConn Health in an AAALAC accredited facility in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Studies were approved by the UConn Health institutional animal care and use committee (IACUC) under protocol numbers 100490-0815, 101095-0518, 101757-0221 and Hz#-Dox0322e-101058 and Hz#-MCh0331e-101086. Experiments at the University of Auckland were performed in accordance with the University of Auckland Code of Ethical Conduct (CEC) and the Animal Welfare Act 1999, under Animal Ethical Committee approval 001940.

Version history

  1. Received: May 4, 2020
  2. Accepted: February 8, 2021
  3. Accepted Manuscript published: February 9, 2021 (version 1)
  4. Version of Record published: February 25, 2021 (version 2)

Copyright

© 2021, Matthews et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,147
    views
  • 584
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brya G Matthews
  2. Sanja Novak
  3. Francesca V Sbrana
  4. Jessica L Funnell
  5. Ye Cao
  6. Emma J Buckels
  7. Danka Grcevic
  8. Ivo Kalajzic
(2021)
Heterogeneity of murine periosteum progenitors involved in fracture healing
eLife 10:e58534.
https://doi.org/10.7554/eLife.58534

Share this article

https://doi.org/10.7554/eLife.58534

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Junjun Yao, Shaoxing Dai ... Tianqing Li
    Research Article

    While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.