Heterogeneity of murine periosteum progenitors involved in fracture healing

  1. Brya G Matthews  Is a corresponding author
  2. Sanja Novak
  3. Francesca V Sbrana
  4. Jessica L Funnell
  5. Ye Cao
  6. Emma J Buckels
  7. Danka Grcevic
  8. Ivo Kalajzic
  1. University of Auckland, New Zealand
  2. University of Connecticut, United States
  3. University of Zagreb, Croatia

Abstract

The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched for progenitor cells, including Sca1+ cells, CFU-F and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that αSMA identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts, but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture, can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum, but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched for skeletal progenitor cells and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.

Data availability

RNAseq data have been deposited in GEO under accession GSE165846. Source data files are provided for all figures (1-8)

The following data sets were generated

Article and author information

Author details

  1. Brya G Matthews

    Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
    For correspondence
    brya.matthews@auckland.ac.nz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4145-4696
  2. Sanja Novak

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8042-932X
  3. Francesca V Sbrana

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica L Funnell

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ye Cao

    Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma J Buckels

    Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  7. Danka Grcevic

    Department of Physiology and Immunology, University of Zagreb, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  8. Ivo Kalajzic

    Department of Reconstructive Sciences, University of Connecticut, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Connecticut Innovations (14-SCA-UCHC-02)

  • Brya G Matthews

Health Research Council of New Zealand (Sir Charles Hercus Fellowship)

  • Brya G Matthews

American Society for Bone and Mineral Research (Rising Star Award)

  • Brya G Matthews

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR055607)

  • Ivo Kalajzic

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR070813)

  • Ivo Kalajzic

Connecticut Innovations (16-RMB-UCHC-10)

  • Ivo Kalajzic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The majority of the study was performed at UConn Health in an AAALAC accredited facility in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Studies were approved by the UConn Health institutional animal care and use committee (IACUC) under protocol numbers 100490-0815, 101095-0518, 101757-0221 and Hz#-Dox0322e-101058 and Hz#-MCh0331e-101086. Experiments at the University of Auckland were performed in accordance with the University of Auckland Code of Ethical Conduct (CEC) and the Animal Welfare Act 1999, under Animal Ethical Committee approval 001940.

Copyright

© 2021, Matthews et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,526
    views
  • 642
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brya G Matthews
  2. Sanja Novak
  3. Francesca V Sbrana
  4. Jessica L Funnell
  5. Ye Cao
  6. Emma J Buckels
  7. Danka Grcevic
  8. Ivo Kalajzic
(2021)
Heterogeneity of murine periosteum progenitors involved in fracture healing
eLife 10:e58534.
https://doi.org/10.7554/eLife.58534

Share this article

https://doi.org/10.7554/eLife.58534

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Desiree Böck, Maria Wilhelm ... Gerald Schwank
    Research Article

    Parkinson’s disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model. Here, we devised an adenine base editing strategy to downregulate PTBP1 in astrocytes and neurons in a chemically-induced PD mouse model. While PTBP1 downregulation in astrocytes had no effect, PTBP1 downregulation in neurons of the striatum resulted in the expression of the DAN marker tyrosine hydroxylase (TH) in non-dividing neurons, which was associated with an increase in striatal dopamine concentrations and a rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis using multiplexed iterative immunofluorescence imaging further revealed that most of these TH-positive cells co-expressed the dopaminergic marker DAT and the pan-neuronal marker NEUN, with the majority of these triple-positive cells being classified as mature GABAergic neurons. Additional research is needed to fully elucidate the molecular mechanisms underlying the expression of the observed markers and understand how the formation of these cells contributes to the rescue of spontaneous motor behaviors. Nevertheless, our findings support a model where downregulation of neuronal, but not astrocytic, PTBP1 can mitigate symptoms in PD mice.