Heterogeneity of murine periosteum progenitors involved in fracture healing
Abstract
The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched for progenitor cells, including Sca1+ cells, CFU-F and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that αSMA identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts, but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture, can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum, but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched for skeletal progenitor cells and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.
Data availability
RNAseq data have been deposited in GEO under accession GSE165846. Source data files are provided for all figures (1-8)
-
scRNAseq of aSMACreER/Ai9+ periosteum cellsNCBI Gene Expression Omnibus, GSE165846.
Article and author information
Author details
Funding
Connecticut Innovations (14-SCA-UCHC-02)
- Brya G Matthews
Health Research Council of New Zealand (Sir Charles Hercus Fellowship)
- Brya G Matthews
American Society for Bone and Mineral Research (Rising Star Award)
- Brya G Matthews
National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR055607)
- Ivo Kalajzic
National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR070813)
- Ivo Kalajzic
Connecticut Innovations (16-RMB-UCHC-10)
- Ivo Kalajzic
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The majority of the study was performed at UConn Health in an AAALAC accredited facility in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Studies were approved by the UConn Health institutional animal care and use committee (IACUC) under protocol numbers 100490-0815, 101095-0518, 101757-0221 and Hz#-Dox0322e-101058 and Hz#-MCh0331e-101086. Experiments at the University of Auckland were performed in accordance with the University of Auckland Code of Ethical Conduct (CEC) and the Animal Welfare Act 1999, under Animal Ethical Committee approval 001940.
Copyright
© 2021, Matthews et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,667
- views
-
- 649
- downloads
-
- 81
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Stem Cells and Regenerative Medicine
Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.