Striatal direct and indirect pathway neurons differentially control the encoding and updating of goal-directed learning

  1. James Peak
  2. Billy Chieng
  3. Genevra Hart
  4. Bernard W Balleine  Is a corresponding author
  1. University of New South Wales, Australia

Abstract

The posterior dorsomedial striatum (pDMS) is necessary for goal-directed action, however the role of the direct (dSPN) and indirect (iSPN) spiny projection neurons in the pDMS in such actions remains unclear. In this series of experiments, we examined the role of pDMS SPNs in goal-directed action in rats and found that, whereas dSPNs were critical for goal-directed learning and for energizing the learned response, iSPNs were involved in updating that learning to support response flexibility. Instrumental training elevated expression of the plasticity marker Zif268 in dSPNs only, and chemogenetic suppression of dSPN activity during training prevented goal-directed learning. Unilateral optogenetic inhibition of dSPNs induced an ipsilateral response bias in goal-directed action performance. In contrast, although initial goal-directed learning was unaffected by iSPN manipulations, optogenetic inhibition of iSPNs, but not dSPNs, impaired the updating of this learning and attenuated response flexibility after changes in the action-outcome contingency.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all experiments reported in this manuscript in an online repository at https://figshare.com/s/23578523b81df00fa6e4

Article and author information

Author details

  1. James Peak

    Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Billy Chieng

    Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Genevra Hart

    Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Bernard W Balleine

    School of Psychology, University of New South Wales, Sydney, Australia
    For correspondence
    bernard.balleine@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8618-7950

Funding

Australian Research Council (DP150104878)

  • Bernard W Balleine

National Health and Medical Research Council (GNT1165346)

  • Bernard W Balleine

National Health and Medical Research Council (GNT1079561)

  • Bernard W Balleine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance All experiments conformed to the guidelines on the ethical use of animals maintained by the Australian code for the care and use of animals for scientific purposes, and all procedures were approved by the Animal Care and Ethics Committee at either the University of New South Wales (Protocl number 19/25A) or the University of Sydney (protocol number 5960/78). All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2020, Peak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,763
    views
  • 534
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Peak
  2. Billy Chieng
  3. Genevra Hart
  4. Bernard W Balleine
(2020)
Striatal direct and indirect pathway neurons differentially control the encoding and updating of goal-directed learning
eLife 9:e58544.
https://doi.org/10.7554/eLife.58544

Share this article

https://doi.org/10.7554/eLife.58544

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Amy N Shore, Keyong Li ... Matthew C Weston
    Research Article

    More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.

    1. Neuroscience
    Jun Yang, Hanqi Zhang, Sukbin Lim
    Research Article

    Errors in stimulus estimation reveal how stimulus representation changes during cognitive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known error patterns typically associated with visual orientation perception. Recent experiments suggest that these errors continuously evolve during working memory, posing a challenge that neither static sensory models nor traditional memory models can address. Here, we demonstrate that these evolving errors, maintaining characteristic shapes, require network interaction between two distinct modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory module, operating alone, supports homogeneous representation via continuous attractor dynamics, the fully connected network forms discrete attractors with moderate drift speed and nonuniform diffusion processes. Together, our work underscores the significance of sensory-memory interaction in continuously shaping stimulus representation during working memory.