Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in Drosophila

Abstract

G4C2 repeat expansions within the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeats undergo repeat-associated non-ATG translation to generate toxic dipeptide repeat proteins. Here, we show that insulin/Igf signalling is reduced in fly models of C9orf72 repeat expansion using RNA-sequencing of adult brain. We further demonstrate that activation of insulin/Igf signalling can mitigate multiple neurodegenerative phenotypes in flies expressing either expanded G4C2 repeats or the toxic dipeptide repeat protein poly-GR. Levels of poly-GR are reduced when components of the insulin/Igf signalling pathway are genetically activated in the diseased flies, suggesting a mechanism of rescue. Modulating insulin signalling in mammalian cells also lowers poly-GR levels. Remarkably, systemic injection of insulin improves the survival of flies expressing G4C2 repeats. Overall, our data suggest that modulation of insulin/Igf signalling could be an effective therapeutic approach against C9orf72 ALS/FTD.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE151826. All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Magda Luciana Atilano

    Genetics, Evolution & Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3819-2023
  2. Sebastian Grönke

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1539-5346
  3. Teresa Niccoli

    Genetics, Evolution & Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Liam Kempthorne

    UK Dementia Research Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver Hahn

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Javier Morón-Oset

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Oliver Hendrich

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Miranda Dyson

    Genetics, Evolution & Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Mirjam Lisette Adams

    UK Dementia Research Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexander Hull

    Genetics, Evolution & Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie-Therese Salcher-Konrad

    UK Dementia Research Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Amy Monaghan

    Alzheimer's Research UK UCL Drug Discovery Institute, University College of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Magda Bictash

    Alzheimer's Research UK UCL Drug Discovery Institute, University College of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Idoia Glaria

    UK Dementia Research Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4556-489X
  15. Adrian M Isaacs

    UK Dementia Research Institute, University College London, London, United Kingdom
    For correspondence
    a.isaacs@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  16. Linda Partridge

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    Linda.Partridge@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9615-0094

Funding

Alzheimer's Research UK (ARUK-PG2016A-6)

  • Adrian M Isaacs

Wellcome Trust

  • Linda Partridge

Max-Planck-Gesellschaft (Open-access funding)

  • Linda Partridge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: May 4, 2020
  2. Accepted: March 9, 2021
  3. Accepted Manuscript published: March 19, 2021 (version 1)
  4. Version of Record published: March 29, 2021 (version 2)

Copyright

© 2021, Atilano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,665
    views
  • 335
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Magda Luciana Atilano
  2. Sebastian Grönke
  3. Teresa Niccoli
  4. Liam Kempthorne
  5. Oliver Hahn
  6. Javier Morón-Oset
  7. Oliver Hendrich
  8. Miranda Dyson
  9. Mirjam Lisette Adams
  10. Alexander Hull
  11. Marie-Therese Salcher-Konrad
  12. Amy Monaghan
  13. Magda Bictash
  14. Idoia Glaria
  15. Adrian M Isaacs
  16. Linda Partridge
(2021)
Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in Drosophila
eLife 10:e58565.
https://doi.org/10.7554/eLife.58565

Share this article

https://doi.org/10.7554/eLife.58565

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.