ALKBH7 mediates necrosis via rewiring of glyoxal metabolism

  1. Chaitanya A Kulkarni
  2. Sergiy M Nadtochiy
  3. Leslie Kennedy
  4. Jimmy Zhang
  5. Sophea Chhim
  6. Hanan Alwaseem
  7. Elizabeth Murphy
  8. Dragony Fu
  9. Paul S Brookes  Is a corresponding author
  1. Univeristy of Rochester Medical Center, United States
  2. University of Rochester Medical Center, United States
  3. National Institutes of Health, United States
  4. University of Rochester, United States

Abstract

Alkb homolog 7 (ALKBH7) is a mitochondrial α-ketoglutarate dioxygenase required for DNA alkylation induced necrosis, but its function and substrates remain unclear. Herein we show ALKBH7 regulates dialdehyde metabolism, which impacts the cardiac response to ischemia-reperfusion (IR) injury. Using a multi-omics approach, we find no evidence ALKBH7 functions as a prolyl-hydroxylase, but we do find Alkbh7-/- mice have elevated glyoxalase I (GLO-1), a dialdehyde detoxifying enzyme. Metabolic pathways related to the glycolytic by-product methylglyoxal (MGO) are rewired in Alkbh7-/- mice, along with elevated levels of MGO protein adducts. Despite greater glycative stress, hearts from Alkbh7-/- mice are protected against IR injury, in a manner blocked by GLO-1 inhibition. Integrating these observations, we propose ALKBH7 regulates glyoxal metabolism, and that protection against necrosis and cardiac IR injury bought on by ALKBH7 deficiency originates from the signaling response to elevated MGO stress.

Data availability

The complete original data set used to generate all figures is attached as a Microsoft Excel file, with the submitted files. A DOI has been reserved at the data sharing site FigShare (DOI: 10.6084/m9.figshare.12200273) and the file has been uploaded there.

Article and author information

Author details

  1. Chaitanya A Kulkarni

    Anesthesiology, Univeristy of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6836-0518
  2. Sergiy M Nadtochiy

    Anesthesiology, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Leslie Kennedy

    NHLBI Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jimmy Zhang

    Anesthesiology, University of Rochester Medical Center, Rochester, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophea Chhim

    Biology, University of Rochester, Rochester, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hanan Alwaseem

    Chemistry, University of Rochester, Rochester, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth Murphy

    NHLBI Intramural Research Program, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dragony Fu

    Biology, University of Rochester, Rochester, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8725-8658
  9. Paul S Brookes

    Anesthesiology, University of Rochester Medical Center, Rochester, United States
    For correspondence
    paul_brookes@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8639-8413

Funding

National Institutes of Health (R01-HL071158)

  • Paul S Brookes

American Heart Association (#19POST34380212)

  • Chaitanya A Kulkarni

NIH Office of the Director (ZO1-HL002066)

  • Leslie Kennedy
  • Elizabeth Murphy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was conducted according to the "NIH Guide" (8th edition, 2011). Animals were housed in an AAALAC accredited facility with food and water available ad libitum. All procedures were performed under tribromoethanol anesthesia. All animal work was approved by the University of Rochester Committee on Animal Resources (UCAR protocol # 2007-087).

Copyright

© 2020, Kulkarni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,583
    views
  • 193
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaitanya A Kulkarni
  2. Sergiy M Nadtochiy
  3. Leslie Kennedy
  4. Jimmy Zhang
  5. Sophea Chhim
  6. Hanan Alwaseem
  7. Elizabeth Murphy
  8. Dragony Fu
  9. Paul S Brookes
(2020)
ALKBH7 mediates necrosis via rewiring of glyoxal metabolism
eLife 9:e58573.
https://doi.org/10.7554/eLife.58573

Share this article

https://doi.org/10.7554/eLife.58573

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.