1. Structural Biology and Molecular Biophysics
Download icon

Cannabidiol interactions with voltage-gated sodium channels

  1. Lily Goodyer Sait
  2. Altin Sula
  3. Mohammad-Reza Ghovanloo
  4. David Hollingworth
  5. Peter C Ruben
  6. Bonnie A Wallace  Is a corresponding author
  1. Birkbeck College, University of London, United Kingdom
  2. Simon Fraser University, Canada
Research Article
  • Cited 1
  • Views 1,688
  • Annotations
Cite this article as: eLife 2020;9:e58593 doi: 10.7554/eLife.58593

Abstract

Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels. CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD. In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels.

Article and author information

Author details

  1. Lily Goodyer Sait

    Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Altin Sula

    Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohammad-Reza Ghovanloo

    Simon Fraser University, Burnaby, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2171-0744
  4. David Hollingworth

    Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter C Ruben

    Simon Fraser University, Burnaby, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7877-5178
  6. Bonnie A Wallace

    Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
    For correspondence
    b.wallace@mail.cryst.bbk.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9649-5092

Funding

Biotechnology and Biological Sciences Research Council (BB/L006790)

  • Bonnie A Wallace

Biotechnology and Biological Sciences Research Council (BB/R001294)

  • Bonnie A Wallace

Medical Research Council (Studentship)

  • Lily Goodyer Sait

Natural Science and Engineering Research Council of Canada (RGPIN03920)

  • Peter C Ruben

Rare Disease Foundation (00000)

  • Peter C Ruben

Natural Science and Engineering Research Council of Canada (CGS-D:535333-2019)

  • Mohammad-Reza Ghovanloo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Publication history

  1. Received: May 5, 2020
  2. Accepted: October 15, 2020
  3. Accepted Manuscript published: October 22, 2020 (version 1)
  4. Version of Record published: November 4, 2020 (version 2)

Copyright

© 2020, Sait et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,688
    Page views
  • 222
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Jin Young Kang et al.
    Research Article

    Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (EC). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Hans-Peter Braun
    Insight

    Atomic structures of mitochondrial enzyme complexes in plants are shedding light on their multiple functions.