Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment

  1. Alba Nicolas-Boluda
  2. Javier Vaquero
  3. Lene Vimeux
  4. Thomas Guilbert
  5. Sarah Barrin
  6. Chahrazade Kantari-Mimoun
  7. Matteo Ponzo
  8. Gilles Renault
  9. Piotr Deptula
  10. Katarzyna Pogoda
  11. Robert Bucki
  12. Ilaria Cascone
  13. José Courty
  14. Laura Fouassier
  15. Florence Gazeau  Is a corresponding author
  16. Emmanuel Donnadieu  Is a corresponding author
  1. INSERM, France
  2. INSERM U1016, France
  3. Institut Cochin - Inserm U1016-CNRS UMR8104-Université Paris Descartes, France
  4. CRRET laboratory, France
  5. Medical University of Białystok, Poland
  6. Polish Academy of Sciences, Poland
  7. Université de Paris, France

Abstract

Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing 5 preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase (LOX) was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.

Data availability

Relevant source data for all figures and supplement figures have been uploaded as Excel files.

Article and author information

Author details

  1. Alba Nicolas-Boluda

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Javier Vaquero

    Centre de Recherche Saint-Antoine, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lene Vimeux

    INSERM U1016, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Guilbert

    Cell Biology of Host Pathogens Interactions, Institut Cochin - Inserm U1016-CNRS UMR8104-Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Barrin

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Chahrazade Kantari-Mimoun

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Matteo Ponzo

    University of Paris-Est Creteil (UPEC), CRRET laboratory, CRETEIL, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Gilles Renault

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Piotr Deptula

    Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
    Competing interests
    The authors declare that no competing interests exist.
  10. Katarzyna Pogoda

    Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Bucki

    Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
    Competing interests
    The authors declare that no competing interests exist.
  12. Ilaria Cascone

    University of Paris-Est Creteil (UPEC), CRRET laboratory, CRETEIL, France
    Competing interests
    The authors declare that no competing interests exist.
  13. José Courty

    University of Paris-Est Creteil (UPEC), CRRET laboratory, CRETEIL, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Laura Fouassier

    Centre de Recherche Saint-Antoine, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6377-5610
  15. Florence Gazeau

    Laboratoire Matière et Systèmes Complexes, Université de Paris, Paris, France
    For correspondence
    florence.gazeau@u-paris.fr
    Competing interests
    The authors declare that no competing interests exist.
  16. Emmanuel Donnadieu

    Institut Cochin, INSERM, Paris, France
    For correspondence
    emmanuel.donnadieu@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4985-7254

Funding

Ligue Contre le Cancer (Equipe labellisée)

  • Alba Nicolas-Boluda
  • Lene Vimeux
  • Sarah Barrin
  • Chahrazade Kantari-Mimoun
  • Emmanuel Donnadieu

Institut National Du Cancer (Program HTE)

  • Alba Nicolas-Boluda
  • Lene Vimeux
  • Sarah Barrin
  • Chahrazade Kantari-Mimoun
  • Emmanuel Donnadieu

European Commission (685795)

  • Florence Gazeau

Agence Nationale de la Recherche (11-IDEX-0004-02)

  • Javier Vaquero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Ethics

Animal experimentation: All animal experiments were performed in agreement with institutional animal use and care regulations after approval by the animal experimentation ethics committee of Paris Descartes University (CEEA 34, 16-063).

Version history

  1. Received: May 7, 2020
  2. Accepted: June 5, 2021
  3. Accepted Manuscript published: June 9, 2021 (version 1)
  4. Version of Record published: June 14, 2021 (version 2)

Copyright

© 2021, Nicolas-Boluda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,010
    views
  • 1,005
    downloads
  • 134
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alba Nicolas-Boluda
  2. Javier Vaquero
  3. Lene Vimeux
  4. Thomas Guilbert
  5. Sarah Barrin
  6. Chahrazade Kantari-Mimoun
  7. Matteo Ponzo
  8. Gilles Renault
  9. Piotr Deptula
  10. Katarzyna Pogoda
  11. Robert Bucki
  12. Ilaria Cascone
  13. José Courty
  14. Laura Fouassier
  15. Florence Gazeau
  16. Emmanuel Donnadieu
(2021)
Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment
eLife 10:e58688.
https://doi.org/10.7554/eLife.58688

Share this article

https://doi.org/10.7554/eLife.58688

Further reading

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.