Alterations of specific cortical GABAergic circuits underlie abnormal network activity in a mouse model of Down syndrome
Abstract
Down syndrome (DS) results in various degrees of cognitive deficits. In DS mouse models, recovery of behavioral and neurophysiological deficits using GABAAR antagonists led to hypothesize an excessive activity of inhibitory circuits in this condition. Nonetheless, whether over-inhibition is present in DS and whether this is due to specific alterations of distinct GABAergic circuits is unknown. In the prefrontal cortex of Ts65Dn mice (a well-established DS model), we found that the dendritic synaptic inhibitory loop formed by somatostatin-positive Martinotti cells (MCs) and pyramidal neurons (PNs) was strongly enhanced, with no alteration in their excitability. Conversely, perisomatic inhibition from parvalbumin-positive (PV) interneurons was unaltered, but PV cells of DS mice lost their classical fast-spiking phenotype and exhibited increased excitability. These microcircuit alterations resulted in reduced pyramidal-neuron firing and increased phase locking to cognitive-relevant network oscillations in vivo. These results define important synaptic and circuit mechanisms underlying cognitive dysfunctions in DS.
Data availability
Source data files have been provided for: Figure 1, Figure 1 - figure supplement 2, Figure 1 - figure supplement 3, Figure 2, Figure 2 figure supplement 1, Figure 2 figure supplement 2, Figure 3, Figure 3 - figure supplement 1, Figure 4, Figure 4 - figure supplement 1 and Figure 5
Article and author information
Author details
Funding
Fondation Lejeune (#1790)
- Javier Zorrilla de San Martin
Agence Nationale de la Recherche - ANR (ANR-12-EMMA-0010)
- Marie-Claude Potier
Agence Nationale de la Recherche - ANR (ANR-16-CE16-0007-02)
- Marie-Claude Potier
ICM - Institut du Cerveau (BBT-MOCONET)
- Marie-Claude Potier
- Alberto Bacci
Fondation Recherche Medicale - Equipe FRM (DEQ20150331684)
- Alberto Bacci
NARSAD independent investigator grant
- Alberto Bacci
Fondation Recherche Medicale - Equipe FRM (EQU201903007860)
- Alberto Bacci
Agence Nationale de la Recherche - ANR (ANR-13-BSV4-0015-01)
- Alberto Bacci
Agence Nationale de la Recherche - ANR (ANR-17-CE16-0026-01)
- Alberto Bacci
Agence Nationale de la Recherche - ANR (ANR-18-CE16-0001-01)
- Alberto Bacci
Agence Nationale de la Recherche - ANR (ANR-10-IAIHU-06)
- Marie-Claude Potier
- Alberto Bacci
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal experimentation: Experimental procedures followed National and European guidelines, and have been approved by the authors' institutional review boards (French Ministry of Research and Innovation (APAFIS#2599-2015110414316981v21). Every effort was made to minimize suffering.
Copyright
© 2020, Zorrilla de San Martin et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,576
- views
-
- 433
- downloads
-
- 29
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Quantitative information about synaptic transmission is key to our understanding of neural function. Spontaneously occurring synaptic events carry fundamental information about synaptic function and plasticity. However, their stochastic nature and low signal-to-noise ratio present major challenges for the reliable and consistent analysis. Here, we introduce miniML, a supervised deep learning-based method for accurate classification and automated detection of spontaneous synaptic events. Comparative analysis using simulated ground-truth data shows that miniML outperforms existing event analysis methods in terms of both precision and recall. miniML enables precise detection and quantification of synaptic events in electrophysiological recordings. We demonstrate that the deep learning approach generalizes easily to diverse synaptic preparations, different electrophysiological and optical recording techniques, and across animal species. miniML provides not only a comprehensive and robust framework for automated, reliable, and standardized analysis of synaptic events, but also opens new avenues for high-throughput investigations of neural function and dysfunction.
-
- Neuroscience
Mesolimbic dopamine encoding of non-contingent rewards and reward-predictive cues has been well established. Considerable debate remains over how mesolimbic dopamine responds to aversion and in the context of aversive conditioning. Inconsistencies may arise from the use of aversive stimuli that are transduced along different neural paths relative to reward or the conflation of responses to avoidance and aversion. Here, we made intraoral infusions of sucrose and measured how dopamine and behavioral responses varied to the changing valence of sucrose. Pairing intraoral sucrose with malaise via injection of lithium chloride (LiCl) caused the development of a conditioned taste aversion (CTA), which rendered the typically rewarding taste of sucrose aversive upon subsequent re-exposure. Following CTA formation, intraoral sucrose suppressed the activity of ventral tegmental area dopamine neurons (VTADA) and nucleus accumbens (NAc) dopamine release. This pattern of dopamine signaling after CTA is similar to intraoral infusions of innately aversive quinine and contrasts with responses to sucrose when it was novel or not paired with LiCl. Dopamine responses were negatively correlated with behavioral reactivity to intraoral sucrose and predicted home cage sucrose preference. Further, dopamine responses scaled with the strength of the CTA, which was increased by repeated LiCl pairings and weakened through extinction. Thus, the findings demonstrate differential dopamine encoding of the same taste stimulus according to its valence, which is aligned to distinct behavioral responses.