Cold-induced hyperphagia requires AgRP-neuron activation in mice

  1. Jennifer Deem
  2. Chelsea L Faber
  3. Christian Pedersen
  4. Bao Anh Phan
  5. Sarah A Larsen
  6. Kayoko Ogimoto
  7. Jarrell T Nelson
  8. Vincent Damian
  9. Megan A Tran
  10. Richard D Palmiter
  11. Karl J Kaiyala
  12. Jarrad M Scarlett
  13. Michael Bruchas
  14. Michael W Schwartz
  15. Gregory J Morton  Is a corresponding author
  1. University of Washington, United States
  2. Howard Hughes Medical Institute, University of Washington, United States
  3. Seattle Children's Hospital, United States

Abstract

To maintain energy homeostasis during cold exposure, the increased energy demands of thermogenesis must be counterbalanced by increased energy intake. To investigate the neurobiological mechanisms underlying this cold-induced hyperphagia, we asked whether agouti-related peptide (AgRP) neurons are activated when animals are placed in a cold environment and, if so, whether this response is required for the associated hyperphagia. We report that AgRP-neuron activation occurs rapidly upon acute cold exposure, as do increases of both energy expenditure and energy intake, suggesting the mere perception of cold is sufficient to engage each of these responses. We further report that silencing of AgRP neurons selectively blocks the effect of cold exposure to increase food intake but has no effect on energy expenditure. Together, these findings establish a physiologically important role for AgRP neurons in the hyperphagic response to cold exposure.

Data availability

Photometry data has been deposited in DryadDOI: https://doi.org/10.5061/dryad.0p2ngf208Individual source data files are associated with individual figures.

Article and author information

Author details

  1. Jennifer Deem

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8865-5145
  2. Chelsea L Faber

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4812-8164
  3. Christian Pedersen

    Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bao Anh Phan

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah A Larsen

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kayoko Ogimoto

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jarrell T Nelson

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Vincent Damian

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Megan A Tran

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard D Palmiter

    Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6587-0582
  11. Karl J Kaiyala

    Oral Health Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jarrad M Scarlett

    Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Michael Bruchas

    Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-7816
  14. Michael W Schwartz

    Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1619-0331
  15. Gregory J Morton

    Medicine, University of Washington, Seattle, United States
    For correspondence
    gjmorton@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8106-8386

Funding

National Institutes of Health (DK089056)

  • Gregory J Morton

National Institutes of Health (T32 GM095421)

  • Chelsea L Faber

National Institutes of Health (T32 HL007028)

  • Jennifer Deem

Diabetes Research Center

  • Jennifer Deem

American Diabetes Association (ADA 1-19-PDF-103)

  • Jennifer Deem

National Institutes of Health (DK083042)

  • Michael W Schwartz

National Institutes of Health (DK101997)

  • Michael W Schwartz

National Institutes of Health (R37 DA033396)

  • Michael Bruchas

National Institutes of Health (R01DA24908)

  • Richard D Palmiter

National Institutes of Health (P30 DA048736)

  • Michael Bruchas

National Institutes of Health (DK035816)

  • Gregory J Morton

Diabetes Research Center (DK17047)

  • Gregory J Morton

National Institutes of Health (F31 DK113673)

  • Chelsea L Faber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to a protocol approved by the institutional animal care and use committee (IACUC) of the University of Washington (#2456-06). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2020, Deem et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Deem
  2. Chelsea L Faber
  3. Christian Pedersen
  4. Bao Anh Phan
  5. Sarah A Larsen
  6. Kayoko Ogimoto
  7. Jarrell T Nelson
  8. Vincent Damian
  9. Megan A Tran
  10. Richard D Palmiter
  11. Karl J Kaiyala
  12. Jarrad M Scarlett
  13. Michael Bruchas
  14. Michael W Schwartz
  15. Gregory J Morton
(2020)
Cold-induced hyperphagia requires AgRP-neuron activation in mice
eLife 9:e58764.
https://doi.org/10.7554/eLife.58764

Share this article

https://doi.org/10.7554/eLife.58764

Further reading

    1. Neuroscience
    Moritz F Wurm, Doruk Yiğit Erigüç
    Research Article

    Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent–object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.