How many neurons are sufficient for perception of cortical activity?

Abstract

Many theories of brain function assume that information is encoded and behaviour is controlled through sparse, distributed patterns of activity. It is therefore crucial to place a lower bound on the amount of neural activity that can drive behaviour and to understand how neuronal networks operate within these constraints. We use an all-optical approach to test this lower limit by driving behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while using two-photon calcium imaging to record the impact on the local network. By precisely titrating the number of neurons in activated ensembles we demonstrate that the lower bound for detection of cortical activity is ~14 pyramidal neurons. We show that there is a very steep sigmoidal relationship between the number of activated neurons and behavioural output, saturating at only ~37 neurons, and that this relationship can shift with learning. By simultaneously measuring activity in the local network, we show that the activation of stimulated ensembles is balanced by the suppression of neighbouring neurons. This surprising behavioural sensitivity in the face of potent network suppression supports the sparse coding hypothesis and suggests that perception of cortical activity balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.

Data availability

Import, processing, analysis and figure code is available on Github (Dalgleish, 2020; https://github.com/alloptical/Dalgleish-eLife-2020) for use with analysed data (https://doi.org/10.6084/m9.figshare.13135505) and/or unprocessed behavioural session data (https://doi.org/10.6084/m9.figshare.13128950). Raw calcium imaging movies are ~1TB in size and are thus available upon reasonable request.

The following data sets were generated

Article and author information

Author details

  1. Henry William Peter Dalgleish

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Lloyd E Russell

    Wolfson Institute for Biomedical Research, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6332-756X
  3. Adam Max Packer

    Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5884-794X
  4. Arnd Roth

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0325-4287
  5. Oliver M Gauld

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Francesca Greenstreet

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Emmett J Thompson

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Häusser

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    For correspondence
    m.hausser@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2673-8957

Funding

ERC (695709)

  • Michael Häusser

Wellcome Trust (201225)

  • Michael Häusser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were carried out under Project Licence 70/14018 (PCC4A4ECE) issued by the UK Home Office in accordance with the UK Animals (Scientific Procedures) Act (1986) and were also subject to local ethical review. All surgical procedures were carried out under isoflurane anaesthesia (5% for induction, 1.5% for maintenance), and every effort was made to minimize suffering.

Copyright

© 2020, Dalgleish et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,268
    views
  • 1,758
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Henry William Peter Dalgleish
  2. Lloyd E Russell
  3. Adam Max Packer
  4. Arnd Roth
  5. Oliver M Gauld
  6. Francesca Greenstreet
  7. Emmett J Thompson
  8. Michael Häusser
(2020)
How many neurons are sufficient for perception of cortical activity?
eLife 9:e58889.
https://doi.org/10.7554/eLife.58889

Share this article

https://doi.org/10.7554/eLife.58889

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.