SWELL1 regulates skeletal muscle cell size, intracellular signalling, adiposity and glucose metabolism

  1. Ashutosh Kumar
  2. Litao Xie
  3. Chau My Ta
  4. Antentor J Hinton
  5. Susheel K Gunasekar
  6. Rachel A Minerath
  7. Karen Shen
  8. Joshua M Maurer
  9. Chad E Grueter
  10. E Dale Abel
  11. Gretchen Meyer
  12. Rajan Sah  Is a corresponding author
  1. Washington University, United States
  2. Washington University School of Medicine, United States
  3. University of Iowa, United States

Abstract

Maintenance of skeletal muscle is beneficial in obesity and Type 2 diabetes. Mechanical stimulation can regulate skeletal muscle differentiation, growth and metabolism, however the molecular mechanosensor remains unknown. Here, we show that SWELL1 (Lrrc8a) functionally encodes a swell-activated anion channel that regulates PI3K-AKT, ERK1/2, mTOR signaling, muscle differentiation, myoblast fusion, cellular oxygen consumption, and glycolysis in skeletal muscle cells. LRRC8A over-expression in Lrrc8a KO myotubes boosts PI3K-AKT-mTOR signaling to supra-normal levels and fully rescues myotube formation. Skeletal muscle targeted Lrrc8a KO mice have smaller myofibers, generate less force ex vivo, and exhibit reduced exercise endurance, associated with increased adiposity under basal conditions, and glucose intolerance and insulin resistance when raised on a high-fat diet, compared to WT mice. These results reveal that the LRRC8 complex regulates insulin-PI3K-AKT-mTOR signalling in skeletal muscle to influence skeletal muscle differentiation in vitro and skeletal myofiber size, muscle function, adiposity and systemic metabolism in vivo.

Data availability

We have uploaded the RNA sequencing data file in GEO (accession code: Series GSE156667 )

The following data sets were generated

Article and author information

Author details

  1. Ashutosh Kumar

    Department of Internal Medicine, Cardiovascular Division, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Litao Xie

    Department of Internal Medicine, Cardiovascular Division, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chau My Ta

    Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Antentor J Hinton

    Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa city, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susheel K Gunasekar

    Department of Internal Medicine, Cardiovascular Division, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel A Minerath

    Fraternal Order of Eagles Diabetes Research Center, Division of Cardiology, University of Iowa, Iowa city, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karen Shen

    Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopedic Surgery, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joshua M Maurer

    Department of Internal Medicine, Cardiovascular Division, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Chad E Grueter

    Fraternal Order of Eagles Diabetes Research Center,Division of Cardiology, University of Iowa, Iowa city, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. E Dale Abel

    Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5290-0738
  11. Gretchen Meyer

    Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopedic Surgery, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rajan Sah

    Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
    For correspondence
    rajan.sah@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1092-1244

Funding

National Institutes of Health (1R01DK106009)

  • Rajan Sah

National Institutes of Health (R01HL125436)

  • Chad E Grueter

National Institutes of Health (RO1HL127764)

  • E Dale Abel

National Institutes of Health (RO1HL112413)

  • E Dale Abel

National Institutes of Health (1P30AR074992-01)

  • Rajan Sah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the approved institutional animal care and use committee (IACUC) protocols of Washington University in St. Louis (20180217) and the University of Iowa (1308148).

Copyright

© 2020, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,008
    views
  • 621
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashutosh Kumar
  2. Litao Xie
  3. Chau My Ta
  4. Antentor J Hinton
  5. Susheel K Gunasekar
  6. Rachel A Minerath
  7. Karen Shen
  8. Joshua M Maurer
  9. Chad E Grueter
  10. E Dale Abel
  11. Gretchen Meyer
  12. Rajan Sah
(2020)
SWELL1 regulates skeletal muscle cell size, intracellular signalling, adiposity and glucose metabolism
eLife 9:e58941.
https://doi.org/10.7554/eLife.58941

Share this article

https://doi.org/10.7554/eLife.58941

Further reading

    1. Cell Biology
    Satoshi Ninagawa, Masaki Matsuo ... Kazutoshi Mori
    Research Advance

    How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.