Photosynthesis without β-carotene

  1. Pengqi Xu
  2. Volha U Chukhutsina
  3. Wojciech J Nawrocki
  4. Gert Schansker
  5. Ludwik W Bielczynski
  6. Yinghong Lu
  7. Daniel Karcher
  8. Ralph Bock
  9. Roberta Croce  Is a corresponding author
  1. Vrije Universiteit Amsterdam, Netherlands
  2. Max Planck Insitute of Molecular Plant Physiology, Germany

Abstract

Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without carotenes in their photosystems have been reported so far, which has led to the common opinion that carotenes are essential for photosynthesis. Here, we report the first plant that grows photoautotrophically in the absence of carotenes: a tobacco plant containing only the xanthophyll astaxanthin. Surprisingly, both photosystems are fully functional despite their carotenoid-binding sites being occupied by astaxanthin instead of β-carotene or remaining empty (i.e., are not occupied by carotenoids). These plants display non-photochemical quenching, despite the absence of both zeaxanthin and lutein and show that tobacco can regulate the ratio between the two photosystems in a very large dynamic range to optimize electron transport.

Data availability

All data used for this study are included in the manuscript or in the supporting information. The source data used to generate figure S7 are provided.

Article and author information

Author details

  1. Pengqi Xu

    Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Volha U Chukhutsina

    Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Wojciech J Nawrocki

    Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5124-3000
  4. Gert Schansker

    Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Ludwik W Bielczynski

    Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Yinghong Lu

    Max Planck Insitute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Karcher

    Max Planck Insitute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralph Bock

    Max Planck Insitute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7502-6940
  9. Roberta Croce

    Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    r.croce@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3469-834X

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vici)

  • Roberta Croce

H2020 European Research Council (ERC CON 281341)

  • Roberta Croce

H2020 European Research Council (ERC ADG 669982)

  • Ralph Bock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,943
    views
  • 938
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengqi Xu
  2. Volha U Chukhutsina
  3. Wojciech J Nawrocki
  4. Gert Schansker
  5. Ludwik W Bielczynski
  6. Yinghong Lu
  7. Daniel Karcher
  8. Ralph Bock
  9. Roberta Croce
(2020)
Photosynthesis without β-carotene
eLife 9:e58984.
https://doi.org/10.7554/eLife.58984

Share this article

https://doi.org/10.7554/eLife.58984