1. Neuroscience
Download icon

Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations

  1. Chuyu Chen
  2. Giulia Soto
  3. Vasin Dumrongprechachan
  4. Nicholas Bannon
  5. Shuo Kang
  6. Yevgenia Kozorovitskiy  Is a corresponding author
  7. Loukia Parisiadou  Is a corresponding author
  1. Feinberg School of Medicine, Northwestern University, United States
  2. Northwestern University, United States
Research Article
  • Cited 2
  • Views 1,384
  • Annotations
Cite this article as: eLife 2020;9:e58997 doi: 10.7554/eLife.58997

Abstract

LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose towards disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using 2-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chuyu Chen

    Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia Soto

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vasin Dumrongprechachan

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas Bannon

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuo Kang

    Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yevgenia Kozorovitskiy

    Department of Neurobiology, Northwestern University, Evanston, United States
    For correspondence
    Yevgenia.Kozorovitskiy@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3710-1484
  7. Loukia Parisiadou

    Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    For correspondence
    loukia.parisiadou@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2569-4200

Funding

National Institute of Neurological Disorders and Stroke (R01NS097901)

  • Loukia Parisiadou

Michael J. Fox Foundation for Parkinson's Research (LRRK2 Challenge)

  • Loukia Parisiadou

National Institute of Neurological Disorders and Stroke (R01NS107539)

  • Yevgenia Kozorovitskiy

Rita Allen Foundation (Rita Allen Scholar Award)

  • Yevgenia Kozorovitskiy

Kinship Foundation (Searle Scholar Award)

  • Yevgenia Kozorovitskiy

Arnold and Mabel Beckman Foundation (Beckman Young Investigator Award)

  • Yevgenia Kozorovitskiy

National Institute of Neurological Disorders and Stroke (F32NS103243)

  • Nicholas Bannon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were approved by Northwestern University Animal Care and Use Committee (Approved protocol numbers IS000035451, IS00000838, and 00009022).

Reviewing Editor

  1. Carl Lupica

Publication history

  1. Received: May 16, 2020
  2. Accepted: October 1, 2020
  3. Accepted Manuscript published: October 2, 2020 (version 1)
  4. Version of Record published: November 3, 2020 (version 2)

Copyright

© 2020, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,384
    Page views
  • 216
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Stefano Perni, Kurt Beam
    Research Article Updated

    Junctions between the endoplasmic reticulum and plasma membrane that are induced by the neuronal junctophilins are of demonstrated importance, but their molecular architecture is still poorly understood and challenging to address in neurons. This is due to the small size of the junctions and the multiple isoforms of candidate junctional proteins in different brain areas. Using colocalization of tagged proteins expressed in tsA201 cells, and electrophysiology, we compared the interactions of JPH3 and JPH4 with different calcium channels. We found that JPH3 and JPH4 caused junctional accumulation of all the tested high-voltage-activated CaV isoforms, but not a low-voltage-activated CaV. Also, JPH3 and JPH4 noticeably modify CaV2.1 and CaV2.2 inactivation rate. RyR3 moderately colocalized at junctions with JPH4, whereas RyR1 and RyR2 did not. By contrast, RyR1 and RyR3 strongly colocalized with JPH3, and RyR2 moderately. Likely contributing to this difference, JPH3 binds to cytoplasmic domain constructs of RyR1 and RyR3, but not of RyR2.

    1. Medicine
    2. Neuroscience
    Edoardo Bistaffa et al.
    Research Article

    Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA).

    Methods In this work, we have challenged PMCA generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology.

    Results: All inoculated mice developed mild spongiform changes, astroglial activation and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate.

    Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious.

    Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (Speedy) to FM; by the Spanish Ministerio de Economía y Competitividad [grant AGL2016-78054-R (AEI/FEDER, UE)] to J.M.T. and J.C.E.; A.M.-M. was supported by a fellowship from the INIA (FPI-SGIT-2015-02).