Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations

  1. Chuyu Chen
  2. Giulia Soto
  3. Vasin Dumrongprechachan
  4. Nicholas Bannon
  5. Shuo Kang
  6. Yevgenia Kozorovitskiy  Is a corresponding author
  7. Loukia Parisiadou  Is a corresponding author
  1. Feinberg School of Medicine, Northwestern University, United States
  2. Northwestern University, United States

Abstract

LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose towards disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using 2-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chuyu Chen

    Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia Soto

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vasin Dumrongprechachan

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas Bannon

    Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shuo Kang

    Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yevgenia Kozorovitskiy

    Department of Neurobiology, Northwestern University, Evanston, United States
    For correspondence
    Yevgenia.Kozorovitskiy@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3710-1484
  7. Loukia Parisiadou

    Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    For correspondence
    loukia.parisiadou@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2569-4200

Funding

National Institute of Neurological Disorders and Stroke (R01NS097901)

  • Loukia Parisiadou

Michael J. Fox Foundation for Parkinson's Research (LRRK2 Challenge)

  • Loukia Parisiadou

National Institute of Neurological Disorders and Stroke (R01NS107539)

  • Yevgenia Kozorovitskiy

Rita Allen Foundation (Rita Allen Scholar Award)

  • Yevgenia Kozorovitskiy

Kinship Foundation (Searle Scholar Award)

  • Yevgenia Kozorovitskiy

Arnold and Mabel Beckman Foundation (Beckman Young Investigator Award)

  • Yevgenia Kozorovitskiy

National Institute of Neurological Disorders and Stroke (F32NS103243)

  • Nicholas Bannon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were approved by Northwestern University Animal Care and Use Committee (Approved protocol numbers IS000035451, IS00000838, and 00009022).

Copyright

© 2020, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,773
    views
  • 390
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chuyu Chen
  2. Giulia Soto
  3. Vasin Dumrongprechachan
  4. Nicholas Bannon
  5. Shuo Kang
  6. Yevgenia Kozorovitskiy
  7. Loukia Parisiadou
(2020)
Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations
eLife 9:e58997.
https://doi.org/10.7554/eLife.58997

Share this article

https://doi.org/10.7554/eLife.58997

Further reading

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

    1. Neuroscience
    Ana Fló, Lucas Benjamin ... Ghislaine Dehaene-Lambertz
    Research Article

    Interest in statistical learning in developmental studies stems from the observation that 8-month-olds were able to extract words from a monotone speech stream solely using the transition probabilities (TP) between syllables (Saffran et al., 1996). A simple mechanism was thus part of the human infant’s toolbox for discovering regularities in language. Since this seminal study, observations on statistical learning capabilities have multiplied across domains and species, challenging the hypothesis of a dedicated mechanism for language acquisition. Here, we leverage the two dimensions conveyed by speech –speaker identity and phonemes– to examine (1) whether neonates can compute TPs on one dimension despite irrelevant variation on the other and (2) whether the linguistic dimension enjoys an advantage over the voice dimension. In two experiments, we exposed neonates to artificial speech streams constructed by concatenating syllables while recording EEG. The sequence had a statistical structure based either on the phonetic content, while the voices varied randomly (Experiment 1) or on voices with random phonetic content (Experiment 2). After familiarisation, neonates heard isolated duplets adhering, or not, to the structure they were familiarised with. In both experiments, we observed neural entrainment at the frequency of the regularity and distinct Event-Related Potentials (ERP) to correct and incorrect duplets, highlighting the universality of statistical learning mechanisms and suggesting it operates on virtually any dimension the input is factorised. However, only linguistic duplets elicited a specific ERP component, potentially an N400 precursor, suggesting a lexical stage triggered by phonetic regularities already at birth. These results show that, from birth, multiple input regularities can be processed in parallel and feed different higher-order networks.