Lichen mimesis in mid-Mesozoic lacewings

  1. Hui Fang
  2. Conrad C Labandeira
  3. Yiming Ma
  4. Bingyu Zheng
  5. Dong Ren
  6. Xinli Wei  Is a corresponding author
  7. Jiaxi Liu  Is a corresponding author
  8. Yongjie Wang  Is a corresponding author
  1. Capital Normal University, China
  2. Smithsonian Institute, United States
  3. Institute of Microbiology, Chinese Academy of Sciences, China

Abstract

Animals mimicking other organisms or using camouflage to deceive predators are vital survival strategies. Modern and fossil insects can simulate diverse objects. Lichens are an ancient symbiosis between a fungus and an alga or a cyanobacterium that sometimes have a plant-like appearance and occasionally are mimicked by modern animals. Nevertheless, lichen models are almost absent in fossil record of mimicry. Here, we provide the earliest fossil evidence of a mimetic relationship between the moth lacewing mimic Lichenipolystoechotes gen. nov. and its co-occurring fossil lichen model Daohugouthallus ciliiferus. We corroborate the lichen affinity of D. ciliiferus and document this mimetic relationship by providing structural similarities and detailed measurements of the mimic’s wing and correspondingly the model’s thallus. Our discovery of lichen mimesis predates modern lichen-insect associations by 165 million years, indicating that during the mid-Mesozoic, the lichen-insect mimesis system was well established and provided lacewings with highly honed survival strategies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hui Fang

    College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Conrad C Labandeira

    Smithsonian Institute, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yiming Ma

    College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Bingyu Zheng

    College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Dong Ren

    College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xinli Wei

    State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    weixl@im.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiaxi Liu

    College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
    For correspondence
    liu-jiax@263.net
    Competing interests
    The authors declare that no competing interests exist.
  8. Yongjie Wang

    College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China
    For correspondence
    wangyjosmy@foxmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1397-8481

Funding

National Natural Science Foundation of China (31970383)

  • Yongjie Wang

National Natural Science Foundation of China (31730087,41688103)

  • Dong Ren

National Natural Science Foundation of China (31770022)

  • Xinli Wei

Natural Science Foundation of Beijing Municipality (5192002)

  • Yongjie Wang

Academy for Multidisciplinary Studies of Capital Normal University

  • Dong Ren
  • Yongjie Wang

Capacity Building for Sci-Tech Innovation - Fundamental Scientific Research Funds (19530050144)

  • Yongjie Wang

Program for Changjiang Scholars and Innovative Research Team in University (IRT-17R75)

  • Dong Ren

Support Project of High Level Teachers in Beijing Municipal Universities (IDHT20180518)

  • Dong Ren

Graduate Student Program for International Exchange and Joint Supervision at Capital Normal University (028175534000,028185511700)

  • Hui Fang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,901
    views
  • 378
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Fang
  2. Conrad C Labandeira
  3. Yiming Ma
  4. Bingyu Zheng
  5. Dong Ren
  6. Xinli Wei
  7. Jiaxi Liu
  8. Yongjie Wang
(2020)
Lichen mimesis in mid-Mesozoic lacewings
eLife 9:e59007.
https://doi.org/10.7554/eLife.59007

Share this article

https://doi.org/10.7554/eLife.59007

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.