Cadherin clusters stabilized by a combination of specific and nonspecific cis-interactions

  1. Connor J Thompson
  2. Zhaoqian Su
  3. Vinh H Vu
  4. Yinghao Wu
  5. Deborah E Leckband
  6. Daniel K Schwartz  Is a corresponding author
  1. University of Colorado Boulder, United States
  2. Albert Einstein College of Medicine, United States
  3. University of Illinois, Urbana−Champaign, United States
  4. University of Illinois, United States

Abstract

We demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.

Data availability

All data generated or analyzed in this work are included in the main text, figure supplements, and Supplementary File 1.

Article and author information

Author details

  1. Connor J Thompson

    Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6226-7171
  2. Zhaoqian Su

    Department of Systems & Computational Biology, Albert Einstein College of Medicine, The Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8369-0697
  3. Vinh H Vu

    Department of Biochemistry, University of Illinois, Urbana−Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yinghao Wu

    Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1181-5670
  5. Deborah E Leckband

    Chemistry and Chemical and Biomolecular Engineering, University of Illinois, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel K Schwartz

    Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States
    For correspondence
    Daniel.schwartz@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5397-7200

Funding

National Institute of General Medical Sciences (1R01GM117104)

  • Connor J Thompson
  • Zhaoqian Su
  • Vinh H Vu
  • Yinghao Wu
  • Deborah E Leckband
  • Daniel K Schwartz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: May 18, 2020
  2. Accepted: September 1, 2020
  3. Accepted Manuscript published: September 2, 2020 (version 1)
  4. Version of Record published: September 21, 2020 (version 2)

Copyright

© 2020, Thompson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,288
    views
  • 247
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Connor J Thompson
  2. Zhaoqian Su
  3. Vinh H Vu
  4. Yinghao Wu
  5. Deborah E Leckband
  6. Daniel K Schwartz
(2020)
Cadherin clusters stabilized by a combination of specific and nonspecific cis-interactions
eLife 9:e59035.
https://doi.org/10.7554/eLife.59035

Share this article

https://doi.org/10.7554/eLife.59035

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.

    1. Structural Biology and Molecular Biophysics
    Abdul Wasim, Sneha Menon, Jagannath Mondal
    Research Article

    Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson’s disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.