1. Stem Cells and Regenerative Medicine
Download icon

Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells

  1. John P Russell
  2. Xinhong Lim
  3. Alice Santambrogio
  4. Val Yianni
  5. Yasmine Kemkem
  6. Bruce Wang
  7. Matthew Fish
  8. Scott Haston
  9. Anaëlle Grabek
  10. Shirleen Hallang
  11. Emily J Lodge
  12. Amanda L Patist
  13. Andreas Schedl
  14. Patrice Mollard
  15. Roel Nusse
  16. Cynthia Lilian Andoniadou  Is a corresponding author
  1. King's College London, United Kingdom
  2. Agency for Science, Technology and Research, Singapore
  3. Institut de Génomique Fonctionnelle, France
  4. Howard Hughes Medical Institute, Stanford University School of Medicine, United States
  5. Stanford University, United States
  6. University College London, United Kingdom
  7. Université Côte d'Azur, France
  8. University of Manchester, United Kingdom
Research Article
  • Cited 2
  • Views 1,033
  • Annotations
Cite this article as: eLife 2021;10:e59142 doi: 10.7554/eLife.59142

Abstract

In response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells.

Data availability

Sequencing data can be accessed through the following link: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA421806

The following data sets were generated

Article and author information

Author details

  1. John P Russell

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Xinhong Lim

    Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4725-5161
  3. Alice Santambrogio

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Val Yianni

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9857-7577
  5. Yasmine Kemkem

    Physiology, Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    No competing interests declared.
  6. Bruce Wang

    Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Matthew Fish

    Developmental Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Scott Haston

    Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3928-4808
  9. Anaëlle Grabek

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    No competing interests declared.
  10. Shirleen Hallang

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  11. Emily J Lodge

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0932-8515
  12. Amanda L Patist

    Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
    Competing interests
    No competing interests declared.
  13. Andreas Schedl

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    No competing interests declared.
  14. Patrice Mollard

    Physiology, Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2324-7589
  15. Roel Nusse

    Developmental Biology, Stanford University, Stanford, United States
    Competing interests
    Roel Nusse, Reviewing editor, eLife.
  16. Cynthia Lilian Andoniadou

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    For correspondence
    cynthia.andoniadou@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4311-5855

Funding

Medical Research Council (MR/L016729/1)

  • Cynthia Lilian Andoniadou

Medical Research Council (MR/T012153/1)

  • Cynthia Lilian Andoniadou

Deutsche Forschungsgemeinschaft (314061271 - TRR 205)

  • Cynthia Lilian Andoniadou

Howard Hughes Medical Institute

  • Roel Nusse

Agence Nationale de la Recherche (ANR-18-CE14-0017)

  • Patrice Mollard

Fondation pour la Recherche Médicale (DEQ20150331732)

  • Patrice Mollard

Lister Institute of Preventive Medicine

  • Cynthia Lilian Andoniadou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed under compliance of the Animals (Scientific Procedures) Act 1986, Home Office License (P5F0A1579) and KCL Biological Safety approval for project 'Function and Regulation of Pituitary Stem Cells in Mammals'

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: May 20, 2020
  2. Accepted: January 4, 2021
  3. Accepted Manuscript published: January 5, 2021 (version 1)
  4. Version of Record published: January 12, 2021 (version 2)

Copyright

© 2021, Russell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,033
    Page views
  • 144
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Stem Cells and Regenerative Medicine
    Diptiman Chanda et al.
    Short Report

    Multicellular organisms maintain structure and function of tissues/organs through emergent, self-organizing behavior. In this report, we demonstrate a critical role for lung mesenchymal stromal cell (L-MSC) aging in determining the capacity to form three-dimensional organoids or ‘alveolospheres’ with type 2 alveolar epithelial cells (AEC2s). In contrast to L-MSCs from aged mice, young L-MSCs support the efficient formation of alveolospheres when co-cultured with young or aged AEC2s. Aged L-MSCs demonstrated features of cellular senescence, altered bioenergetics, and a senescence-associated secretory profile (SASP). The reactive oxygen species generating enzyme, NADPH oxidase 4 (Nox4), was highly activated in aged L-MSCs and Nox4 downregulation was sufficient to, at least partially, reverse this age-related energy deficit, while restoring the self-organizing capacity of alveolospheres. Together, these data indicate a critical role for cellular bioenergetics and redox homeostasis in an organoid model of self-organization and support the concept of thermodynamic entropy in aging biology.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Arantxa Cebrian-Silla et al.
    Research Article Updated

    The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis.