HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120

  1. Xiaomei Xu
  2. Véronique Risoul
  3. Deborah Byrne
  4. Stéphanie Champ
  5. Badreddine Douzi
  6. Amel Latifi  Is a corresponding author
  1. Aix-Marseille University-CNRS, France
  2. Aix-Marseille university-CNRS, France
  3. Institut de Microbiologie de la Méditerranée, CNRS, France
  4. Aix-Marseille university, CNRS, France
  5. Universite de Lorraine, Inra, France

Abstract

Local activation and long-range inhibition are mechanisms conserved in self-organizing systems leading to biological patterns. A number of them involve the production by the developing cell of an inhibitory morphogen, but how this cell becomes immune to self-inhibition is rather unknown. Under combined nitrogen starvation, the multicellular cyanobacterium Nostoc PCC 7120 develops nitrogen-fixing heterocysts with a pattern of one heterocyst every 10-12 vegetative cells. Cell differentiation is regulated by HetR which activates the synthesis of its own inhibitory morphogens, diffusion of which establishes the differentiation pattern. Here we show that HetR interacts with HetL at the same interface as PatS, and that this interaction is necessary to suppress inhibition and to differentiate heterocysts. hetL expression is induced under nitrogen-starvation and is activated by HetR, suggesting that HetL provides immunity to the heterocyst. This protective mechanism might be conserved in other differentiating cyanobacteria as HetL homologues are spread across the phylum.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for bacterial two hybrid analysis, qRT-PCR and heterocyst intervals and percentages

Article and author information

Author details

  1. Xiaomei Xu

    Laboatoire de chimie bactérienne, Aix-Marseille University-CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Véronique Risoul

    Laboratoire de chimie bactérienne, Aix-Marseille university-CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Deborah Byrne

    Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Stéphanie Champ

    Laboratoire de chimie bactérienne, Aix-Marseille university, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Badreddine Douzi

    INRAE DynAMic, Universite de Lorraine, Inra, Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amel Latifi

    Laboratoire de Chimie Bactérienne, Aix-Marseille university-CNRS, Marseille, France
    For correspondence
    latifi@imm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0776-7349

Funding

Centre National de la Recherche Scientifique

  • Xiaomei Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,243
    views
  • 182
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaomei Xu
  2. Véronique Risoul
  3. Deborah Byrne
  4. Stéphanie Champ
  5. Badreddine Douzi
  6. Amel Latifi
(2020)
HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120
eLife 9:e59190.
https://doi.org/10.7554/eLife.59190

Share this article

https://doi.org/10.7554/eLife.59190

Further reading

    1. Microbiology and Infectious Disease
    Nelson V Simwela, Eleni Jaecklein ... David G Russell
    Research Article

    Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host-derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria’s ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyses demonstrate that macrophages that cannot either import, store, or catabolize fatty acids restrict Mtb growth by both common and divergent antimicrobial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy, and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction of the same fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.