HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120

  1. Xiaomei Xu
  2. Véronique Risoul
  3. Deborah Byrne
  4. Stéphanie Champ
  5. Badreddine Douzi
  6. Amel Latifi  Is a corresponding author
  1. Aix-Marseille University-CNRS, France
  2. Aix-Marseille university-CNRS, France
  3. Institut de Microbiologie de la Méditerranée, CNRS, France
  4. Aix-Marseille university, CNRS, France
  5. Universite de Lorraine, Inra, France

Abstract

Local activation and long-range inhibition are mechanisms conserved in self-organizing systems leading to biological patterns. A number of them involve the production by the developing cell of an inhibitory morphogen, but how this cell becomes immune to self-inhibition is rather unknown. Under combined nitrogen starvation, the multicellular cyanobacterium Nostoc PCC 7120 develops nitrogen-fixing heterocysts with a pattern of one heterocyst every 10-12 vegetative cells. Cell differentiation is regulated by HetR which activates the synthesis of its own inhibitory morphogens, diffusion of which establishes the differentiation pattern. Here we show that HetR interacts with HetL at the same interface as PatS, and that this interaction is necessary to suppress inhibition and to differentiate heterocysts. hetL expression is induced under nitrogen-starvation and is activated by HetR, suggesting that HetL provides immunity to the heterocyst. This protective mechanism might be conserved in other differentiating cyanobacteria as HetL homologues are spread across the phylum.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for bacterial two hybrid analysis, qRT-PCR and heterocyst intervals and percentages

Article and author information

Author details

  1. Xiaomei Xu

    Laboatoire de chimie bactérienne, Aix-Marseille University-CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Véronique Risoul

    Laboratoire de chimie bactérienne, Aix-Marseille university-CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Deborah Byrne

    Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Stéphanie Champ

    Laboratoire de chimie bactérienne, Aix-Marseille university, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Badreddine Douzi

    INRAE DynAMic, Universite de Lorraine, Inra, Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amel Latifi

    Laboratoire de Chimie Bactérienne, Aix-Marseille university-CNRS, Marseille, France
    For correspondence
    latifi@imm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0776-7349

Funding

Centre National de la Recherche Scientifique

  • Xiaomei Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Susan Golden

Version history

  1. Received: May 22, 2020
  2. Accepted: August 6, 2020
  3. Accepted Manuscript published: August 7, 2020 (version 1)
  4. Version of Record published: September 7, 2020 (version 2)

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,085
    Page views
  • 161
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaomei Xu
  2. Véronique Risoul
  3. Deborah Byrne
  4. Stéphanie Champ
  5. Badreddine Douzi
  6. Amel Latifi
(2020)
HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium Nostoc PCC 7120
eLife 9:e59190.
https://doi.org/10.7554/eLife.59190

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Vikrant K Bhosle, Chunxiang Sun ... Lisa A Robinson
    Research Article

    Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Francesca G Tomasi, Satoshi Kimura ... Matthew K Waldor
    Research Article

    Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of nine modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.