Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation

  1. Victor Tobiasson
  2. Alexey Amunts  Is a corresponding author
  1. Stockholm University, Sweden

Abstract

To reveal steps in the evolution of translation, we identified ciliates as a model with high coding capacity of the mitochondrial genome and characterized its mitoribosomes by cryo-EM. It revealed a 94-protein and 4-rRNA assembly with an additional protein mass of ~700 kDa on the small subunit, while the large subunit lacks 5S rRNA. The structure shows that the small subunit head is constrained, tRNA binding sites are formed by mitochondria-specific protein elements, conserved protein bS1 is excluded, and bacterial RNA polymerase binding site is blocked. We provide evidence for intrinsic protein targeting system through visualization of mitochondria-specific mL105 by the exit tunnel that would facilitate recruitment of a nascent polypeptide. Functional protein uS3m is encoded by three complementary genes from the nucleus and mitochondrion, establishing a link between genetic drift and mitochondrial translation. Finally, we reannotated nine open reading frames in the mitochondrial genome that code for mitoribosomal proteins.

Data availability

The electron density maps have been deposited into EMDB, with accession codes EMD-11032 (monosome), EMD-11033 (LSU), EMD-11034 (SSU), EMD-11035 (CP), EMD-11036 (L7/L12 stalk), EMD-11037 (head), EMD-11038 (back protuberance). The model has been deposited in the PDB, with accession code 6Z1P.

The following data sets were generated

Article and author information

Author details

  1. Victor Tobiasson

    Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexey Amunts

    Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
    For correspondence
    amunts@scilifelab.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5302-1740

Funding

Ragnar Söderbergs stiftelse (M44/16)

  • Alexey Amunts

Cancerfonden (2017/1041)

  • Alexey Amunts

H2020 European Research Council (ERC-2018-StG- 805230)

  • Alexey Amunts

Knut och Alice Wallenbergs Stiftelse (2018.0080)

  • Alexey Amunts

European Molecular Biology Organization (EMBO Young Investigator Program)

  • Alexey Amunts

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Cynthia Wolberger, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: May 25, 2020
  2. Accepted: June 8, 2020
  3. Accepted Manuscript published: June 18, 2020 (version 1)
  4. Version of Record published: June 30, 2020 (version 2)

Copyright

© 2020, Tobiasson & Amunts

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,979
    Page views
  • 317
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Victor Tobiasson
  2. Alexey Amunts
(2020)
Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation
eLife 9:e59264.
https://doi.org/10.7554/eLife.59264

Share this article

https://doi.org/10.7554/eLife.59264

Further reading

    1. Structural Biology and Molecular Biophysics
    Ekaterina Smirnova, Emmanuelle Bignon ... Adam Ben Shem
    Research Article

    Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.

    1. Structural Biology and Molecular Biophysics
    Bernhard Schuster
    Insight

    The surface layer of Sulfolobus acidocaldarius consists of a flexible but stable outer protein layer that interacts with an inner, membrane-bound protein.