Microsecond interaural time difference discrimination restored by cochlear implants after neonatal deafness
Abstract
Spatial hearing in cochlear implant (CI) patients remains a major challenge with many early deaf users reported to have no measurable sensitivity to interaural time differences (ITDs). Deprivation of binaural experience during an early critical period is often hypothesized to be the cause of this shortcoming. However, we show that neonatally deafened (ND) rats provided with precisely synchronized CI stimulation in adulthood can be trained to lateralize ITDs with essentially normal behavioral thresholds near 50 μs. Furthermore, comparable ND rats show high physiological sensitivity to ITDs immediately after binaural implantation in adulthood. Our result that ND CI rats achieved very good behavioral ITD thresholds while prelingually deaf human CI patients often fail to develop a useful sensitivity to ITD raises urgent questions concerning the possibility that shortcomings in technology or treatment, rather than missing input during early development, may be behind the usually poor binaural outcomes for current CI patients.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Data have been deposited to Dryad, under the DOI 10.5061/dryad.573n5tb6d.
-
Behavioral and ephys data of research paperDryad Digital Repository, doi:10.5061/dryad.573n5tb6d.
Article and author information
Author details
Funding
Deutscher Akademischer Austauschdienst (P.R.I.M.E. - Postdoctoral Researchers International Mobility Experience,REA grant agreement n 605728)
- Nicole Rosskothen-Kuhl
Hong Kong General Research Fund (Hong Kong General Research Fund (11100219))
- Jan W H Schnupp
Deutsche Forschungsgemeinschaft (Cluster of Excellence BrainLinks-BrainTools,Grant number EXC1086)
- Nicole Rosskothen-Kuhl
Taube Kinder lernen hoeren e.V.
- Nicole Rosskothen-Kuhl
Hong Kong (Medical Research Fund (06172296))
- Jan W H Schnupp
Shenzhen Science and Innovation Fund (Shenzhen Science and Innovation Fund (JCYJ20180307124024360))
- Jan W H Schnupp
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures involving experimental animals reported here were approved by the Department of Health of Hong Kong (#16-52 DH/HA&P/8/2/5) or Regierungspräsidium Freiburg (#35-9185.81/G-17/124), as well as by the appropriate local ethical review committee. All surgery was performed under ketamine and xylazine anesthesia, and every effort was made to minimize suffering.
Copyright
© 2021, Rosskothen-Kuhl et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,600
- views
-
- 225
- downloads
-
- 29
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.
-
- Neuroscience
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.