Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area

  1. Elina Nagaeva
  2. Ivan Zubarev
  3. Carolina Bengtsson Gonzales
  4. Mikko Forss
  5. Kasra Nikouei
  6. Elena de Miguel
  7. Lauri Elsilä
  8. Anni-Maija Linden
  9. Jens Hjerling-Leffler
  10. George J Augustine
  11. Esa R Korpi  Is a corresponding author
  1. University of Helsinki, Finland
  2. Aalto University, Finland
  3. Karolinska Insitutet, Sweden
  4. Karolinska Institutet, Sweden
  5. Nanyang Technological University, Singapore

Abstract

The cellular architecture of the ventral tegmental area (VTA), the main hub of the brain reward system, remains only partially characterized. To extend the characterization to inhibitory neurons, we have identified three distinct subtypes of somatostatin (Sst)-expressing neurons in the mouse VTA. These neurons differ in their electrophysiological and morphological properties, anatomical localization, as well as mRNA expression profiles. Importantly, similar to cortical Sst-containing interneurons, most VTA Sst neurons express GABAergic inhibitory markers, but some of them also express glutamatergic excitatory markers and a subpopulation even express dopaminergic markers. Furthermore, only some of the proposed marker genes for cortical Sst neurons were expressed in the VTA Sst neurons. Physiologically, one of the VTA Sst neuron subtypes locally inhibited neighboring dopamine neurons. Overall, our results demonstrate the remarkable complexity and heterogeneity of VTA Sst neurons and suggest that these cells are multifunctional players in the midbrain reward circuitry.

Data availability

scRNA-seq raw and expression data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-8780.The following previously published data sets were used:•https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746 (Tasic et al., 2018)•https://storage.googleapis.com/dropviz-downloads/static/regions/F_GRCm38.81.P60SubstantiaNigra.raw.dge.txt.gz (Saunders et al., 2018)Custom written software for automated firing pattern analysis is available for downloading from here: https://github.com/zubara/fffpa.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Elina Nagaeva

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2828-6234
  2. Ivan Zubarev

    Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1620-8485
  3. Carolina Bengtsson Gonzales

    Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Mikko Forss

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Kasra Nikouei

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Elena de Miguel

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Lauri Elsilä

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9744-4753
  8. Anni-Maija Linden

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens Hjerling-Leffler

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. George J Augustine

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Esa R Korpi

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    For correspondence
    esa.korpi@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0683-4009

Funding

The project was funded by the Academy of Finland (1278174 and 1317399), The Finnish National Agency for Education EDUFI, the Sigrid Juselius Foundation, and research grants MOE2015-T2-2-095 and MOE2017-T3-1-002 from the Singapore Ministry of Education. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were authorized by the National Animal Experiment Board in Finland (Eläinkoelautakunta, ELLA; Permit Number: ESAVI/1172/04.10.07/2018) and Institutional Animal Care and Use Committee in Singapore (NTU-IACUC).

Copyright

© 2020, Nagaeva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,801
    views
  • 436
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elina Nagaeva
  2. Ivan Zubarev
  3. Carolina Bengtsson Gonzales
  4. Mikko Forss
  5. Kasra Nikouei
  6. Elena de Miguel
  7. Lauri Elsilä
  8. Anni-Maija Linden
  9. Jens Hjerling-Leffler
  10. George J Augustine
  11. Esa R Korpi
(2020)
Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area
eLife 9:e59328.
https://doi.org/10.7554/eLife.59328

Share this article

https://doi.org/10.7554/eLife.59328

Further reading

    1. Neuroscience
    Simonas Griesius, Amy Richardson, Dimitri Michael Kullmann
    Research Article

    Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.