Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area

  1. Elina Nagaeva
  2. Ivan Zubarev
  3. Carolina Bengtsson Gonzales
  4. Mikko Forss
  5. Kasra Nikouei
  6. Elena de Miguel
  7. Lauri Elsilä
  8. Anni-Maija Linden
  9. Jens Hjerling-Leffler
  10. George J Augustine
  11. Esa R Korpi  Is a corresponding author
  1. University of Helsinki, Finland
  2. Aalto University, Finland
  3. Karolinska Insitutet, Sweden
  4. Karolinska Institutet, Sweden
  5. Nanyang Technological University, Singapore

Abstract

The cellular architecture of the ventral tegmental area (VTA), the main hub of the brain reward system, remains only partially characterized. To extend the characterization to inhibitory neurons, we have identified three distinct subtypes of somatostatin (Sst)-expressing neurons in the mouse VTA. These neurons differ in their electrophysiological and morphological properties, anatomical localization, as well as mRNA expression profiles. Importantly, similar to cortical Sst-containing interneurons, most VTA Sst neurons express GABAergic inhibitory markers, but some of them also express glutamatergic excitatory markers and a subpopulation even express dopaminergic markers. Furthermore, only some of the proposed marker genes for cortical Sst neurons were expressed in the VTA Sst neurons. Physiologically, one of the VTA Sst neuron subtypes locally inhibited neighboring dopamine neurons. Overall, our results demonstrate the remarkable complexity and heterogeneity of VTA Sst neurons and suggest that these cells are multifunctional players in the midbrain reward circuitry.

Data availability

scRNA-seq raw and expression data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-8780.The following previously published data sets were used:•https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746 (Tasic et al., 2018)•https://storage.googleapis.com/dropviz-downloads/static/regions/F_GRCm38.81.P60SubstantiaNigra.raw.dge.txt.gz (Saunders et al., 2018)Custom written software for automated firing pattern analysis is available for downloading from here: https://github.com/zubara/fffpa.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Elina Nagaeva

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2828-6234
  2. Ivan Zubarev

    Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1620-8485
  3. Carolina Bengtsson Gonzales

    Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Mikko Forss

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Kasra Nikouei

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Elena de Miguel

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Lauri Elsilä

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9744-4753
  8. Anni-Maija Linden

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jens Hjerling-Leffler

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. George J Augustine

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Esa R Korpi

    Department of Pharmacology, University of Helsinki, University of Helsinki, Finland
    For correspondence
    esa.korpi@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0683-4009

Funding

The project was funded by the Academy of Finland (1278174 and 1317399), The Finnish National Agency for Education EDUFI, the Sigrid Juselius Foundation, and research grants MOE2015-T2-2-095 and MOE2017-T3-1-002 from the Singapore Ministry of Education. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were authorized by the National Animal Experiment Board in Finland (Eläinkoelautakunta, ELLA; Permit Number: ESAVI/1172/04.10.07/2018) and Institutional Animal Care and Use Committee in Singapore (NTU-IACUC).

Copyright

© 2020, Nagaeva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,886
    views
  • 441
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elina Nagaeva
  2. Ivan Zubarev
  3. Carolina Bengtsson Gonzales
  4. Mikko Forss
  5. Kasra Nikouei
  6. Elena de Miguel
  7. Lauri Elsilä
  8. Anni-Maija Linden
  9. Jens Hjerling-Leffler
  10. George J Augustine
  11. Esa R Korpi
(2020)
Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area
eLife 9:e59328.
https://doi.org/10.7554/eLife.59328

Share this article

https://doi.org/10.7554/eLife.59328

Further reading

    1. Neuroscience
    Song Chang, Beilin Zheng ... Liping Yu
    Research Article

    Multisensory object discrimination is essential in everyday life, yet the neural mechanisms underlying this process remain unclear. In this study, we trained rats to perform a two-alternative forced-choice task using both auditory and visual cues. Our findings reveal that multisensory perceptual learning actively engages auditory cortex (AC) neurons in both visual and audiovisual processing. Importantly, many audiovisual neurons in the AC exhibited experience-dependent associations between their visual and auditory preferences, displaying a unique integration model. This model employed selective multisensory enhancement for the auditory-visual pairing guiding the contralateral choice, which correlated with improved multisensory discrimination. Furthermore, AC neurons effectively distinguished whether a preferred auditory stimulus was paired with its associated visual stimulus using this distinct integrative mechanism. Our results highlight the capability of sensory cortices to develop sophisticated integrative strategies, adapting to task demands to enhance multisensory discrimination abilities.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.