Toxoplasma TgATG9 is critical for autophagy and long-term persistence in tissue cysts

  1. David Smith  Is a corresponding author
  2. Geetha Kannan
  3. Isabelle Coppens
  4. Fengrong Wang
  5. Hoa Mai Nguyen
  6. Aude Cerutti
  7. Einar B Olafsson
  8. Patrick A Rimple
  9. Tracey L Schultz
  10. Nayanna M Mercado Soto
  11. Manlio Di Cristina
  12. Sébastien Besteiro
  13. Vern B Carruthers  Is a corresponding author
  1. Moredun Research Institute, United Kingdom
  2. University of Michigan, United States
  3. Johns Hopkins University, United States
  4. Université de Montpellier, France
  5. Università degli Studi di Perugia, Italy

Abstract

Many of the world's warm-blooded species are chronically infected with Toxoplasma gondii tissue cysts, including an estimated one third of the global human population. The cellular processes that permit long-term persistence within the cyst are largely unknown for T. gondii and related coccidian parasites that impact human and animal health. Herein we show that genetic ablation of TgATG9 substantially reduces canonical autophagy and compromises bradyzoite viability. Transmission electron microscopy revealed numerous structural abnormalities occurring in ∆atg9 bradyzoites. Intriguingly, abnormal mitochondrial networks were observed in TgATG9-deficient bradyzoites, some of which contained numerous different cytoplasmic components and organelles. ∆atg9 bradyzoite fitness was drastically compromised in vitro and in mice, with very few brain cysts identified in mice 5 weeks post-infection. Taken together, our data suggests that TgATG9, and by extension autophagy, is critical for cellular homeostasis in bradyzoites and is necessary for long-term persistence within the cyst of this coccidian parasite.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. David Smith

    Disease Control, Moredun Research Institute, Penicuik, United Kingdom
    For correspondence
    d.smith@moredun.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5158-0522
  2. Geetha Kannan

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Isabelle Coppens

    Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fengrong Wang

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hoa Mai Nguyen

    Laboratory of Pathogen Host Interactions, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Aude Cerutti

    Laboratory of Pathogen Host Interactions, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Einar B Olafsson

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrick A Rimple

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tracey L Schultz

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nayanna M Mercado Soto

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Manlio Di Cristina

    4.Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4154-5210
  12. Sébastien Besteiro

    Laboratory of Pathogen Host Interactions, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1853-1494
  13. Vern B Carruthers

    Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    For correspondence
    vcarruth@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01AI120627)

  • Vern B Carruthers

National Institutes of Health (R01AI060767)

  • Isabelle Coppens

Agence Nationale de la Recherche (ANR-19-CE15-0023)

  • Sébastien Besteiro

Fondation pour la Recherche Médicale (FRM EQ20170336725)

  • Sébastien Besteiro

National Institutes of Health (R25GM086262)

  • Nayanna M Mercado Soto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sebastian Lourido, Whitehead Institute for Biomedical Research, United States

Ethics

Animal experimentation: All laboratory animal work in this study was carried out in accordance with policies and guidelines specified by the Office of Laboratory Animal Welfare, the US Department of Agriculture, and the American Association for Accreditation of Laboratory Animal Care (AAALAC). The University of Michigan Committee on the Use and Care of Animals (IACUC) approved the animal protocol used for this study (Animal Welfare Assurance A3114-01, protocol PRO00008638).

Version history

  1. Received: June 1, 2020
  2. Accepted: April 27, 2021
  3. Accepted Manuscript published: April 27, 2021 (version 1)
  4. Version of Record published: May 17, 2021 (version 2)

Copyright

© 2021, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,840
    views
  • 287
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Smith
  2. Geetha Kannan
  3. Isabelle Coppens
  4. Fengrong Wang
  5. Hoa Mai Nguyen
  6. Aude Cerutti
  7. Einar B Olafsson
  8. Patrick A Rimple
  9. Tracey L Schultz
  10. Nayanna M Mercado Soto
  11. Manlio Di Cristina
  12. Sébastien Besteiro
  13. Vern B Carruthers
(2021)
Toxoplasma TgATG9 is critical for autophagy and long-term persistence in tissue cysts
eLife 10:e59384.
https://doi.org/10.7554/eLife.59384

Share this article

https://doi.org/10.7554/eLife.59384

Further reading

    1. Microbiology and Infectious Disease
    Guoqi Li, Xiaohong Cao ... Shihua Wang
    Research Article

    The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.