1. Neuroscience
Download icon

Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease

  1. Henri Leinonen  Is a corresponding author
  2. Nguyen C Pham
  3. Taylor Boyd
  4. Johanes Santoso
  5. Krzysztof Palczewski
  6. Frans Vinberg  Is a corresponding author
  1. University of California, Irvine, United States
  2. University of Utah, United States
Research Article
  • Cited 1
  • Views 1,613
  • Annotations
Cite this article as: eLife 2020;9:e59422 doi: 10.7554/eLife.59422

Abstract

Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod – rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.

Data availability

Sequencing data have been uploaded in GEO, accession numbers: GSE152474 (1-month-old samples) and GSE156533 (3-month-old samples).

The following data sets were generated

Article and author information

Author details

  1. Henri Leinonen

    Gavin Herbert Eye Institute, Ophthalmology, University of California, Irvine, Irvine, United States
    For correspondence
    hleinone@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0388-832X
  2. Nguyen C Pham

    Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taylor Boyd

    Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Johanes Santoso

    Gavin Herbert Eye Institute, Ophthalmology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Krzysztof Palczewski

    1.Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0788-545X
  6. Frans Vinberg

    Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, United States
    For correspondence
    frans.vinberg@utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3439-4979

Funding

National Eye Institute (R00 EY026651)

  • Frans Vinberg

Research to Prevent Blindness (Unrestricted grant to the Department of Ophthalmology and Visual Sciences,University of Utah)

  • Frans Vinberg

International Retinal Research Foundation (Regular Grant)

  • Frans Vinberg

Research to Prevent Blindness (Dr. H. James and Carole Free Career Development)

  • Frans Vinberg

National Eye Institute (R01 EY009339)

  • Krzysztof Palczewski

National Eye Institute (R24 EY027283)

  • Krzysztof Palczewski

Eye and Tissue Bank Foundation (Postdoctoral Award)

  • Henri Leinonen

Finnish Cultural Foundation (Postdoctoral Award)

  • Henri Leinonen

Orion Research Foundation (Postdoctoral Award)

  • Henri Leinonen

Research to Prevent Blindness (Unrestricted grant to the Department of Ophthalmology,University of California,Irvine)

  • Krzysztof Palczewski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols adhered to Guide for the Care and Use of Laboratory Animals and were approved by the institutional Animal Studies Committees at the University of Utah (protocol #20-17015) and University of California, Irvine (protocol #AUP-18-124).

Reviewing Editor

  1. Lois Smith, Boston Children's Hospital/Harvard Medical School, United States

Publication history

  1. Received: May 28, 2020
  2. Accepted: September 8, 2020
  3. Accepted Manuscript published: September 22, 2020 (version 1)
  4. Version of Record published: October 1, 2020 (version 2)

Copyright

© 2020, Leinonen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,613
    Page views
  • 219
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Jack Goffinet et al.
    Research Article Updated

    Increases in the scale and complexity of behavioral data pose an increasing challenge for data analysis. A common strategy involves replacing entire behaviors with small numbers of handpicked, domain-specific features, but this approach suffers from several crucial limitations. For example, handpicked features may miss important dimensions of variability, and correlations among them complicate statistical testing. Here, by contrast, we apply the variational autoencoder (VAE), an unsupervised learning method, to learn features directly from data and quantify the vocal behavior of two model species: the laboratory mouse and the zebra finch. The VAE converges on a parsimonious representation that outperforms handpicked features on a variety of common analysis tasks, enables the measurement of moment-by-moment vocal variability on the timescale of tens of milliseconds in the zebra finch, provides strong evidence that mouse ultrasonic vocalizations do not cluster as is commonly believed, and captures the similarity of tutor and pupil birdsong with qualitatively higher fidelity than previous approaches. In all, we demonstrate the utility of modern unsupervised learning approaches to the quantification of complex and high-dimensional vocal behavior.

    1. Neuroscience
    Iris Bachmutsky et al.
    Short Report Updated

    Opioids are perhaps the most effective analgesics in medicine. However, between 1999 and 2018, over 400,000 people in the United States died from opioid overdose. Excessive opioids make breathing lethally slow and shallow, a side-effect called opioid-induced respiratory depression. This doubled-edged sword has sparked the desire to develop novel therapeutics that provide opioid-like analgesia without depressing breathing. One such approach has been the design of so-called ‘biased agonists’ that signal through some, but not all pathways downstream of the µ-opioid receptor (MOR), the target of morphine and other opioid analgesics. This rationale stems from a study suggesting that MOR-induced ß-arrestin 2 dependent signaling is responsible for opioid respiratory depression, whereas adenylyl cyclase inhibition produces analgesia. To verify this important result that motivated the ‘biased agonist’ approach, we re-examined breathing in ß-arrestin 2-deficient mice and instead find no connection between ß-arrestin 2 and opioid respiratory depression. This result suggests that any attenuated effect of ‘biased agonists’ on breathing is through an as-yet defined mechanism.