Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions

  1. Sapthaswaran Veerapathiran
  2. Cathleen Teh
  3. Shiwen Zhu
  4. Indira Kartigayen
  5. Vladimir Korzh
  6. Paul T Matsudaira
  7. Thorsten Wohland  Is a corresponding author
  1. National University of Singapore, Singapore
  2. International Institute of Molecular and Cell Biology in Warsaw, Poland

Abstract

Wnt3 proteins are lipidated and glycosylated, secreted signaling molecules that play an important role in zebrafish neural patterning and brain development. However, the transport mechanism of lipid-modified Wnts through the hydrophilic extracellular environment for long-range action remains unresolved. Here, we determine how Wnt3 accomplishes long-range distribution in the zebrafish brain. First, we characterize the Wnt3-producing source and Wnt3-receiving target regions. Subsequently, we analyze Wnt3 mobility at different length scales by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. We demonstrate that Wnt3 spreads extracellularly and interacts with heparan sulfate proteoglycans (HSPG). We then determine the binding affinity of Wnt3 to its receptor, Frizzled1 (Fzd1), using fluorescence cross-correlation spectroscopy, and show that the co-receptor, low-density lipoprotein receptor-related protein 5 (Lrp5), is required for Wnt3-Fzd1 interaction. Our results are consistent with the extracellular distribution of Wnt3 by a diffusive mechanism that is modified by tissue morphology, interactions with HSPG and Lrp5-mediated receptor binding, to regulate zebrafish brain development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 4, 5, 6 and Table 1. Videos 1 and 2 represent the raw file used to reconstruct Figures 2,3 and Videos 3,4 respectively.

Article and author information

Author details

  1. Sapthaswaran Veerapathiran

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Cathleen Teh

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiwen Zhu

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Indira Kartigayen

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Vladimir Korzh

    Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul T Matsudaira

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Thorsten Wohland

    Biological Sciences and Chemistry, National University of Singapore, Singapore, Singapore
    For correspondence
    twohland@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0148-4321

Funding

Ministry of Education - Singapore (MOE2016-T3-1-005)

  • Thorsten Wohland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was performed in strict accordance with Institutional Animal Care and Use Committee (IACUC) protocol of Biological Resource Center (BRC), A*STAR, Singapore (IACUC #161105) and the National University of Singapore (IACUC# BR18-1023).

Copyright

© 2020, Veerapathiran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,952
    views
  • 244
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sapthaswaran Veerapathiran
  2. Cathleen Teh
  3. Shiwen Zhu
  4. Indira Kartigayen
  5. Vladimir Korzh
  6. Paul T Matsudaira
  7. Thorsten Wohland
(2020)
Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions
eLife 9:e59489.
https://doi.org/10.7554/eLife.59489

Share this article

https://doi.org/10.7554/eLife.59489

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Valentin Babosha, Natalia Klimenko ... Oksana Maksimenko
    Research Article

    The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity ‘entry’ sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3–7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalío Reyes, Arthur D Lander, Marcos Nahmad
    Research Article Updated

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here, we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between robustness and precision to establish tunable patterning properties in a target-specific manner.