Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex

  1. Michael J Sheedlo
  2. Jeong Min Chung
  3. Neha Sawhney
  4. Clarissa L Durie
  5. Timothy L Cover  Is a corresponding author
  6. Melanie D Ohi  Is a corresponding author
  7. D Borden Lacy  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. University of Michigan, United States
  3. Vanderbilt University School of Medicine, United States
  4. University Of Michigan, United States

Abstract

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing 5 proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.

Data availability

All cryo-EM data included in this manuscript are available through the Electron Microscopy Data Bank (EMD-20021, EMD-22081, EMD-22076, and EMD-22077). All models that were constructed from these data are available via the Protein Data Bank (PDB 6X6S, 6X6J, 6X6K, and 6X6L).

The following data sets were generated

Article and author information

Author details

  1. Michael J Sheedlo

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3185-1727
  2. Jeong Min Chung

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4285-8764
  3. Neha Sawhney

    Department of Medicine, Vanderbilt University School of Medicine, Nasvhille, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4943-1018
  4. Clarissa L Durie

    Life Sciences Institute, University Of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4027-4386
  5. Timothy L Cover

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, United States
    For correspondence
    timothy.l.cover@vumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8503-002X
  6. Melanie D Ohi

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    mohi@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1750-4793
  7. D Borden Lacy

    Pathology, Microbiology and Immunology; Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    borden.lacy@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2273-8121

Funding

National Institute of Allergy and Infectious Diseases (AI118932)

  • Timothy L Cover
  • Melanie D Ohi
  • D Borden Lacy

National Institute of Allergy and Infectious Diseases (AI039657)

  • Timothy L Cover

National Cancer Institute (CA116087)

  • Timothy L Cover

National Institute of General Medical Sciences (GM103310)

  • Melanie D Ohi

National Institute of Diabetes and Digestive and Kidney Diseases (2T32DK007673)

  • Michael J Sheedlo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: May 29, 2020
  2. Accepted: September 1, 2020
  3. Accepted Manuscript published: September 2, 2020 (version 1)
  4. Version of Record published: September 23, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,121
    Page views
  • 270
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Sheedlo
  2. Jeong Min Chung
  3. Neha Sawhney
  4. Clarissa L Durie
  5. Timothy L Cover
  6. Melanie D Ohi
  7. D Borden Lacy
(2020)
Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex
eLife 9:e59495.
https://doi.org/10.7554/eLife.59495
  1. Further reading

Further reading

    1. Cancer Biology
    2. Microbiology and Infectious Disease
    Changkun Hu, Taylor Bugbee ... Nicholas Wallace
    Research Article Updated

    Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.

    1. Microbiology and Infectious Disease
    Fabrice Jean-Pierre, Thomas H Hampton ... George A O'Toole
    Research Article Updated

    Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.