Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex

  1. Michael J Sheedlo
  2. Jeong Min Chung
  3. Neha Sawhney
  4. Clarissa L Durie
  5. Timothy L Cover  Is a corresponding author
  6. Melanie D Ohi  Is a corresponding author
  7. D Borden Lacy  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. University of Michigan, United States
  3. Vanderbilt University School of Medicine, United States
  4. University Of Michigan, United States

Abstract

The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing 5 proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.

Data availability

All cryo-EM data included in this manuscript are available through the Electron Microscopy Data Bank (EMD-20021, EMD-22081, EMD-22076, and EMD-22077). All models that were constructed from these data are available via the Protein Data Bank (PDB 6X6S, 6X6J, 6X6K, and 6X6L).

The following data sets were generated

Article and author information

Author details

  1. Michael J Sheedlo

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3185-1727
  2. Jeong Min Chung

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4285-8764
  3. Neha Sawhney

    Department of Medicine, Vanderbilt University School of Medicine, Nasvhille, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4943-1018
  4. Clarissa L Durie

    Life Sciences Institute, University Of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4027-4386
  5. Timothy L Cover

    Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, United States
    For correspondence
    timothy.l.cover@vumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8503-002X
  6. Melanie D Ohi

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    mohi@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1750-4793
  7. D Borden Lacy

    Pathology, Microbiology and Immunology; Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    borden.lacy@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2273-8121

Funding

National Institute of Allergy and Infectious Diseases (AI118932)

  • Timothy L Cover
  • Melanie D Ohi
  • D Borden Lacy

National Institute of Allergy and Infectious Diseases (AI039657)

  • Timothy L Cover

National Cancer Institute (CA116087)

  • Timothy L Cover

National Institute of General Medical Sciences (GM103310)

  • Melanie D Ohi

National Institute of Diabetes and Digestive and Kidney Diseases (2T32DK007673)

  • Michael J Sheedlo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 29, 2020
  2. Accepted: September 1, 2020
  3. Accepted Manuscript published: September 2, 2020 (version 1)
  4. Version of Record published: September 23, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,451
    Page views
  • 288
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Sheedlo
  2. Jeong Min Chung
  3. Neha Sawhney
  4. Clarissa L Durie
  5. Timothy L Cover
  6. Melanie D Ohi
  7. D Borden Lacy
(2020)
Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex
eLife 9:e59495.
https://doi.org/10.7554/eLife.59495

Share this article

https://doi.org/10.7554/eLife.59495

Further reading

    1. Microbiology and Infectious Disease
    Bo Lyu, Qisheng Song
    Short Report

    The dynamic interplay between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) represents a captivating area of research with implications for understanding the molecular mechanisms underlying pathogenicity. This study conducted a comprehensive analysis of a large-scale dataset from reported 89 pathogenic strains of bacteria to investigate the potential interactions between G4 structures and PAIs. G4 structures exhibited an uneven and non-random distribution within the PAIs and were consistently conserved within the same pathogenic strains. Additionally, this investigation identified positive correlations between the number and frequency of G4 structures and the GC content across different genomic features, including the genome, promoters, genes, tRNA, and rRNA regions, indicating a potential relationship between G4 structures and the GC-associated regions of the genome. The observed differences in GC content between PAIs and the core genome further highlight the unique nature of PAIs and underlying factors, such as DNA topology. High-confidence G4 structures within regulatory regions of Escherichia coli were identified, modulating the efficiency or specificity of DNA integration events within PAIs. Collectively, these findings pave the way for future research to unravel the intricate molecular mechanisms and functional implications of G4-PAI interactions, thereby advancing our understanding of bacterial pathogenicity and the role of G4 structures in pathogenic diseases.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Ray Chang, Ari Davydov ... Manu Prakash
    Research Article

    Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3–4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60–140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.