Abstract

Sustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we show that a subset of Doublesex+ pC1 neurons in the Drosophila female brain, called pC1d/e, can drive minutes-long changes in female behavior in the presence of males. Using automated reconstruction of a volume electron microscopic (EM) image of the female brain, we map all inputs and outputs to both pC1d and pC1e. This reveals strong recurrent connectivity between, in particular, pC1d/e neurons and a specific subset of Fruitless+ neurons called aIPg. We additionally find that pC1d/e activation drives long-lasting persistent neural activity in brain areas and cells overlapping with the pC1d/e neural network, including both Doublesex+ and Fruitless+ neurons. Our work thus links minutes-long persistent changes in behavior with persistent neural activity and recurrent circuit architecture in the female brain.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. David S Deutsch

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8587-2435
  2. Diego A Pacheco

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas Encarnacion-Rivera

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Talmo D Pereira

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9075-8365
  5. Ramie Fathy

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan Clemens

    European Neuroscience Institute, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4200-8097
  7. Cyrille Girardin

    Neuroscience, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Adam J Calhoun

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Elise C Ireland

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Austin T Burke

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sven Dorkenwald

    Princeton Neuroscience Institute and Department of Computer Science, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Claire E McKellar

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3580-7336
  13. Thomas Macrina

    Princeton Neuroscience Institute and Department of Computer Science, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Ran Lu

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Kisuk Lee

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Nico Kemnitz

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Dodham Ih

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Manuel Castro

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Akhilesh Halageri

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Chris Jordan

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. William Silversmith

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Jingpeng Wu

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. H Sebastian Seung

    Princeton Neuroscience Institute and Department of Computer Science, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Mala Murthy

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    mmurthy@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3063-3389

Funding

National Institutes of Health (RF1 MH117815-01)

  • Mala Murthy

National Institutes of Health (R01 NS104899)

  • Mala Murthy

Howard Hughes Medical Institute (Faculty Scholar)

  • Mala Murthy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan R Carey, Champalimaud Foundation, Portugal

Version history

  1. Received: May 30, 2020
  2. Accepted: November 18, 2020
  3. Accepted Manuscript published: November 23, 2020 (version 1)
  4. Accepted Manuscript updated: November 24, 2020 (version 2)
  5. Version of Record published: January 6, 2021 (version 3)
  6. Version of Record updated: January 14, 2021 (version 4)
  7. Version of Record updated: January 19, 2021 (version 5)
  8. Version of Record updated: May 20, 2021 (version 6)
  9. Version of Record updated: September 29, 2021 (version 7)

Copyright

© 2020, Deutsch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,280
    Page views
  • 551
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David S Deutsch
  2. Diego A Pacheco
  3. Lucas Encarnacion-Rivera
  4. Talmo D Pereira
  5. Ramie Fathy
  6. Jan Clemens
  7. Cyrille Girardin
  8. Adam J Calhoun
  9. Elise C Ireland
  10. Austin T Burke
  11. Sven Dorkenwald
  12. Claire E McKellar
  13. Thomas Macrina
  14. Ran Lu
  15. Kisuk Lee
  16. Nico Kemnitz
  17. Dodham Ih
  18. Manuel Castro
  19. Akhilesh Halageri
  20. Chris Jordan
  21. William Silversmith
  22. Jingpeng Wu
  23. H Sebastian Seung
  24. Mala Murthy
(2020)
The neural basis for a persistent internal state in Drosophila females
eLife 9:e59502.
https://doi.org/10.7554/eLife.59502

Further reading

    1. Neuroscience
    Christian Brodbeck, Proloy Das ... Jonathan Z Simon
    Tools and Resources

    Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: 1) Is there a significant neural representation corresponding to this predictor variable? And if so, 2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.

    1. Neuroscience
    Mika Rubinov
    Review Article

    Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.