Extensive and diverse patterns of cell death sculpt neural networks in insects

  1. Sinziana Pop
  2. Chin-Lin Chen
  3. Connor J Sproston
  4. Shu Kondo
  5. Pavan Ramdya
  6. Darren W Williams  Is a corresponding author
  1. King's College London, United Kingdom
  2. EPFL, Switzerland
  3. National Institute of Genetics, Japan

Abstract

Changes to the structure and function of neural networks are thought to underlie the evolutionary adaptation of animal behaviours. Among the many developmental phenomena that generate change programmed cell death appears to play a key role. We show that cell death occurs continuously throughout insect neurogenesis and happens soon after neurons are born. Mimicking an evolutionary role for increasing cell numbers, we artificially block programmed cell death in the medial neuroblast lineage in Drosophila melanogaster, which results in the production of 'undead' neurons with complex arborisations and distinct neurotransmitter identities. Activation of these 'undead' neurons and recordings of neural activity in behaving animals demonstrate that they are functional. Focusing on two dipterans which have lost flight during evolution we reveal that reductions in populations of flight interneurons are likely caused by increased cell death during development. Our findings suggest that the evolutionary modulation of death-based patterning could generate novel network configurations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting figures.

Article and author information

Author details

  1. Sinziana Pop

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8811-8307
  2. Chin-Lin Chen

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Connor J Sproston

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Shu Kondo

    Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Pavan Ramdya

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0699-5825
  6. Darren W Williams

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    darren.williams@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5917-4935

Funding

Biotechnology and Biological Sciences Research Council (BB/P025552/1)

  • Darren W Williams

Biotechnology and Biological Sciences Research Council (BB/L022672/1)

  • Darren W Williams

SNSF (175667)

  • Pavan Ramdya

Eccellenza (181239)

  • Pavan Ramdya

R'Equip (177102)

  • Pavan Ramdya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: June 2, 2020
  2. Accepted: September 6, 2020
  3. Accepted Manuscript published: September 7, 2020 (version 1)
  4. Version of Record published: October 5, 2020 (version 2)
  5. Version of Record updated: October 6, 2020 (version 3)

Copyright

© 2020, Pop et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,880
    views
  • 350
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sinziana Pop
  2. Chin-Lin Chen
  3. Connor J Sproston
  4. Shu Kondo
  5. Pavan Ramdya
  6. Darren W Williams
(2020)
Extensive and diverse patterns of cell death sculpt neural networks in insects
eLife 9:e59566.
https://doi.org/10.7554/eLife.59566

Share this article

https://doi.org/10.7554/eLife.59566

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.