1. Developmental Biology
Download icon

Extensive and diverse patterns of cell death sculpt neural networks in insects

  1. Sinziana Pop
  2. Chin-Lin Chen
  3. Connor J Sproston
  4. Shu Kondo
  5. Pavan Ramdya
  6. Darren W Williams  Is a corresponding author
  1. King's College London, United Kingdom
  2. EPFL, Switzerland
  3. National Institute of Genetics, Japan
Research Article
  • Cited 0
  • Views 1,708
  • Annotations
Cite this article as: eLife 2020;9:e59566 doi: 10.7554/eLife.59566

Abstract

Changes to the structure and function of neural networks are thought to underlie the evolutionary adaptation of animal behaviours. Among the many developmental phenomena that generate change programmed cell death appears to play a key role. We show that cell death occurs continuously throughout insect neurogenesis and happens soon after neurons are born. Mimicking an evolutionary role for increasing cell numbers, we artificially block programmed cell death in the medial neuroblast lineage in Drosophila melanogaster, which results in the production of 'undead' neurons with complex arborisations and distinct neurotransmitter identities. Activation of these 'undead' neurons and recordings of neural activity in behaving animals demonstrate that they are functional. Focusing on two dipterans which have lost flight during evolution we reveal that reductions in populations of flight interneurons are likely caused by increased cell death during development. Our findings suggest that the evolutionary modulation of death-based patterning could generate novel network configurations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting figures.

Article and author information

Author details

  1. Sinziana Pop

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8811-8307
  2. Chin-Lin Chen

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Connor J Sproston

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Shu Kondo

    Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Pavan Ramdya

    School of Life Sciences, Brain Mind Institute and Interfaculty Institute of Bioengineering, Neuroengineering Laboratory, EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0699-5825
  6. Darren W Williams

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    darren.williams@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5917-4935

Funding

Biotechnology and Biological Sciences Research Council (BB/P025552/1)

  • Darren W Williams

Biotechnology and Biological Sciences Research Council (BB/L022672/1)

  • Darren W Williams

SNSF (175667)

  • Pavan Ramdya

Eccellenza (181239)

  • Pavan Ramdya

R'Equip (177102)

  • Pavan Ramdya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: June 2, 2020
  2. Accepted: September 6, 2020
  3. Accepted Manuscript published: September 7, 2020 (version 1)
  4. Version of Record published: October 5, 2020 (version 2)
  5. Version of Record updated: October 6, 2020 (version 3)

Copyright

© 2020, Pop et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,708
    Page views
  • 218
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tania Moreno-Mármol et al.
    Research Article

    The vertebrate eye-primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup-shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.

    1. Developmental Biology
    2. Neuroscience
    Meike E van der Heijden et al.
    Research Article

    Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.